NOTE: This document is 92 pages (see more information below)

Appendix A: Roundabout Justification Report

NOTE: In total, this 92-page PDF contains the following technical appendices:
A. Roundabout Justification Report
B. Public Engagement Materials
C. 140th Street Traffic Analysis
D. Roundabout Concepts
E. Diamond Path Striping
F. Environmental Support Documentation
G. Identified Utilities
H. Cost Estimates

Roundabout Justification Report

For

CSAH 33 (Diamond Path) and $140^{\text {th }}$ Street/Connemara Trail Intersection

in

Apple Valley \& Rosemount, Dakota County

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Bryan T. Nemeth, P.E.

43554
Lic. No.
07/02/2020
Date

APPROVED:

City of Apple Valley Engineer

City of Rosemount Engineer

Dakota County Traffic Engineer

Metro District State Aid Engineer

Date

Date

Date

Date

Introduction

An analysis of the intersection of CSAH 33 (Diamond Path) and $140^{\text {th }}$ Street West/Connemara Trail was completed. The intersection currently provides efficient operations and is anticipated to sufficiently accommodate the forecasted growth in traffic. More notably, half of the reported crashes at the intersection between 2016 and 2018 have involved right angle and left-turn collisions and the intersection has a notable crash history. Dakota County, with the support of the Cities of Apple Valley and Rosemount, is exploring the feasibility of a roundabout at the intersection to improve operations and safety of the intersection and to benefit the existing pedestrian facilities in the area.

Existing Conditions

CSAH 33 is classified as an "Other Minor Arterial" locally known as Diamond Path. CSAH 33 provides a north-south connection to CSAH 31 (Pilot Knob Road), CSAH 42 ($150^{\text {th }}$ Street) and CSAH 46 ($160^{\text {th }}$ Street), of which CSAH 31 is an A-Minor Arterial - Expander, while CSAH 42 is a Principal Arterial and CSAH 46 is a A-Minor Arterial - Expander. CSAH 31 serves large areas of eastern Apple Valley and the City of Rosemount. At the intersection with $140^{\text {th }}$ Street/Connemara Trail, CSAH 33 is a four-lane undivided urban highway with dedicated left turn lanes. The four-lane urban section transitions to a twolane rural section approximately 600 ' north of the intersection. The four-lane section is carried south past the Independent School District (ISD) 196 campus and is transitioned to a two-lane urban section at the intersection at $145^{\text {th }}$ Street. The posted speed limit on CSAH 33 is 45 miles per hour (mph).
Both $140^{\text {th }}$ Street and Connemara Trail are classified as Major Collector roadways. This east-west connection intersects CSAH 33 as a four-lane, urban section without turn lanes and serves as a connecting route between Rosemount and Apple Valley. Connemara Trail was restriped as a three-lane section during the summer of 2019 approximately 200' east of CSAH 33 where the roadway transitions from four lanes to three. The speed limit is posted as 35 mph east of CSAH 33 and 45 mph west of CSAH 33 .

Pedestrian facilities are in place along both sides of $140^{\text {th }}$ Street and Connemara Trail, as well as the south leg of CSAH 33. Minnesota Valley Transit Authority (MVTA) serves two bus stops at the intersection. Overhead electric transmission lines and poles run along the east side of CSAH 33.

Figure 1: Project Location Map

Data Collection

The intersection analysis utilized traffic data collected in September 2019. 24-hour turning movement counts were collected. The peak hours were used to analyze traffic operations at the study location. The AM peak hour was found to be from 7:00 to 8:00 AM and the PM peak hour was found to be from 4:00 to 5:00 PM. Existing ADT was estimated below from the counts collected. Traffic volume details can be found in Appendix A.

Existing ADT:
$140^{\text {th }}$ Street west of CSAH $33-7,050$
Connemara Trail east of CSAH 33-6,150
CSAH 33 north of $140^{\text {th }}$ Street/Connemara Trail - 8,250
CSAH 33 south of $140^{\text {th }}$ Street/Connemara Trail - 11,000

Traffic Forecasting

Growth rates were calculated for each leg of the intersection using the most recent MnDOT AADT volumes and the 2040 Dakota County forecasts. Table 1 details the most recent MnDOT AADT and growth rate used to calculate the forecasted AADT. Projected 2030 and 2040 peak hour turning movement counts can be found in Appendix A of the RJR.

Table 1: Forecasted AADT

Street	Leg	MnDOT Most Recent AADT		Growth Rate	Forecasted Volumes	
		AADT	Year		2030	2040
Connemara Trail	East	6000	2018	0.36\%	6300	6500
140th Street W	West	7400	2018	0.06\%	7500	7500
CSAH 33	South	10600	2016	0.40\%	11200	11800
	North	8100	2016	0.53\%	8700	9200

Warrant Analysis

All-way stop control and traffic control signal warrant analyses were completed for the intersection using the 2019 and forecasted traffic volumes.

Traffic Control Signal Warrant Analysis

Traffic signal warrants have been developed as national guidelines to promote continuity of traffic control devices to ensure that traffic signals are installed at intersections that would benefit from their use.

According to the Minnesota Manual on Uniform Traffic Control Devices (MnMUTCD) a traffic control signal should not be installed unless one or more of the warrants can be met, however the satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic signal. Furthermore, a traffic control signal should not be installed unless an engineering study indicates that the traffic control signal will improve the overall safety and operation of the intersection. Finally, the signal should not disrupt the progressive flow of traffic.

All-Way Stop Control Warrant Analysis

All-way stop control can be useful as a safety measure at intersections if safety concerns exist because of high traffic volumes in multiple directions or if there is insufficient sight distance available to see conflicting traffic on an approach to an intersection. The decision to install an all-way stop control should be based on an engineering study. The MnMUTCD identifies the following criteria that should be considered in the engineering study for an all-way stop control installation:

- Condition A: Where traffic control signals are justified, an all-way stop can be installed as an interim measure.
- Condition B: Five or more crashes are reported in a 12-month period.
- Condition C : The volume of either vehicles or a combination of vehicles, pedestrians and bicycles entering the intersection from all approaches for any eight hours of an average day meets the minimum volume requirements set forth in section 2B. 7 of the 2018 MnMUTCD.
Further guidance and details are provided in the MnMUTCD. A roundabout is considered to be warranted if the intersection meets warrants for either a traffic signal or an all-way stop. Warrant analysis results are shown for the existing and forecasted volumes in Table 2 below.

Table 2: Warrants Met

	Hours	Hours Met		
Warrant	Required	2019 Volumes	2030 Volumes	2040 Volumes
Warrant 1A	8	8	8	8
Warrant 1B	8	4	7	8
Warrant 2	4	5	7	7
Warant 3	1	2	3	4
AWSC Warrants	8	15	15	15

Warrant analysis shows that the intersection meets signal and all-way stop control warrants under existing and forecasted volumes. Traffic warrant details can be found in Appendix B of the RJR.

Safety Analysis

Three-year crash data (2016-2018) was provided by Dakota County. There have been 14 recorded crashes at this intersection between 2016 and 2018. Three of the recorded crashes were classified as minor or possible injury crashes, and the remainder categorized as property damage only. Seven of the observed crashes were reported as right angle or left turn collisions as highlighted in the crash diagram figure shown in Figure 2.
Figure 2: Crash Diagram

In the three-year data period, the intersection of CSAH 33 and $140^{\text {th }}$ Street W/Connemara Trail is shown to have a Critical Index of 1.08 , indicating that the intersection is operating above the expected normal range (critical index >1.0) when compared to other similar intersections statewide. The intersection is statistically considered to be operating outside the expected, normal range.
MnDOT provided additional crash data that included crashes occurring in 2019. Five crashes have been reported in 2019. Two of the crashes were reported as possible injury while the other three were property damage only crashes. Most importantly, all five crashes were reported as right-angle collisions, unusual for an all-way stop controlled intersection.

The intersection may be experiencing an elevated crash rate due to the multi-lane approaches to the allway stop control and motorists running the stop signs (not coming to a full stop and checking all lanes for opposing traffic). The large total number of lanes approaching the intersection may cause confusion to drivers in determining who has the right-of-way to enter the intersection. A change in traffic control or change in geometry may reduce these crashes caused by driver confusion.
Figure 3: Crash Rate by Intersection Control Type

MnDOT has performed statewide crash safety analyses of various intersection control types. The intersection crash rate at CSAH 33 and $140^{\text {th }}$ Street/Connemara Trail is over two times the average crash rate for statewide all-way stops as highlighted in Figure 3. Additionally, the average crash rate for singlelane roundabout in Minnesota is lower than the statewide average for all-way stop controlled intersections.

A large reason for the inherent safety benefit that roundabouts provide is the reduction of intersection conflict points as illustrated in Figure 4. Conflict points are locations where two vehicle movement paths intersect. Where these paths intersect perpendicularly, collisions are more likely to be severe; these points are terms 'Major Conflict Points.' Where vehicle paths intersect in a merging/diverging nature, collisions tend to be less severe and injuries are unlikely; these points are termed 'Minor Conflict Points.' Finally, locations where a vehicular path intersects with a pedestrian crossing are pedestrian conflict points. At the CSAH 33 and $140^{\text {th }}$ Street/Connemara Trail intersection where many lanes are present on all four legs, many conflict points are present. The conflict points associated with a single-lane roundabout is vastly reduced for minor and pedestrian conflict points, and major conflict points are eliminated. The roundabout geometry also reduces vehicle speeds entering and traveling through the roundabout.

Figure 4: Intersection Conflict Points

Similarly, pedestrian safety is improved with roundabout geometry due to the implementation of twostaged crossings. Rather than crossing up to five lanes of traffic traveling in two directions at one time, single lane roundabouts allow pedestrians to cross one lane of traffic traveling in a single direction at one time. Splitter islands provide refuge areas for pedestrians to safely wait for acceptable gaps in traffic and shorten the physical crossing distance therefore limiting pedestrian exposure to traffic.
Crash data, including a detailed crash diagram, can be found in Appendix C.

Alternatives

Two alternatives were considered at this location: Do Nothing/Existing Geometry, and a Single-Lane Roundabout. Each alternative is summarized below.
Do-Nothing: Maintain the existing geometry and all-way stop control.
Single-Lane Roundabout: Convert the intersection to a single-lane roundabout.
A signalized intersection was not considered as part of this report as the option is not justified for this location due to speeds and neighborhood context. A traffic signal also does not have County support.

Operations Analysis

The Do-Nothing alternative was analyzed using Synchro/SimTraffic and methods within the Highway Capacity Manual to determine Level of Service (LOS), average vehicle delays, and queue lengths. The roundabout alternative was analyzed using Junctions 9 ARCADY (Assessment of Roundabout Capacity

Name: CSAH 33 \& $140^{\text {th }}$ Street/Connemara Trail RJR
Date: October 1, 2020
Page: 7
and Delay) software. Full operations and queueing reports can be found in Appendix D of the RJR.
Table 3 shows the existing traffic operations.
Table 3: Existing Operations

Approach	AM Peak Hour					PM Peak Hour				
	LOS by Approach		95% Queue (veh)	LOS		LOS by Approach		95% Queue (veh)	LOS	
	Delay	LOS		Delay	LOS	Delay	LOS		Delay	LOS
Existing Conditions										
140th St EB	7	A	4	10	B	11	B	5	13	B
Connemara Trl WB	8	A	4			12	B	5		
CSAH 33 NB	11	B	5			11	B	4		
CSAH 33 SB	10	B	4			16	C	7		

Under the existing traffic volumes, the intersection operates with acceptable levels of vehicular delay during both peak hours. Average queues on all approaches are typically 2-3 vehicles long, with maximum queues of 150 feet.

Table 4 shows the anticipated traffic results for the Do-Nothing alternative for the 2030 and 2040 forecasted traffic volumes.

Table 4: Do Nothing Traffic Operations Results

Approach	AM Peak Hour					PM Peak Hour				
	LOS by Approach		95\% Queue (veh)	LOS		LOS by Approach		95% Queue (veh)	LOS	
	Delay	LOS		Delay	LOS	Delay	LOS		Delay	LOS
Do Nothing - 2030 Volumes										
140th St EB	8	A	4	10	B	12	B	5	14	B
Connemara Trl WB	9	A	4			13	B	5		
CSAH 33 NB	12	B	5			12	B	4		
CSAH 33 SB	10	B	3			17	C	7		
Do Nothing - 2040 Volumes										
140th St EB	8	A	4	11	B	12	B	5	14	B
Connemara Trl WB	9	A	5			13	B	5		
CSAH 33 NB	13	B	7			12	B	5		
CSAH 33 SB	11	B	4			18	C	7		

The Do-Nothing Alternative is shown to see a slight increase in overall and movement delays incrementally as traffic volumes increase at the intersection. However, due to the relatively low levels of forecasted traffic growth, the all-way stop control is anticipated to continue to provide acceptable delays and queues on all approaches during both peak hours. Similarly, average and maximum queues are anticipated to be slightly greater than shown under the existing traffic volumes.

Table 5 shows the anticipated traffic results for the Single-Lane Roundabout alternative for the existing, 2030 and 2040 forecasted traffic volumes.

Name: CSAH 33 \& $140^{\text {th }}$ Street/Connemara Trail RJR
Date: October 1, 2020
Page: 8

Table 5: Single-Lane Roundabout Traffic Operations Results

Approach	AM Peak Hour					PM Peak Hour				
	LOS by Approach		95\% Queue (veh)	Intersection LOS		LOS by Approach		95% Queue (veh)	Intersection LOS	
	Delay	LOS		Delay	LOS	Delay	LOS		Delay	LOS
Single Lane Roundabout - 2019 Volumes										
140th St EB	5	A	2	8	A	10	B	4	9	A
Connemara Trl WB	8	A	3			6	A	2		
CSAH 33 NB	10	B	7			8	A	4		
CSAH 33 SB	5	A	2			11	B	6		
Single Lane Roundabout - 2030 Volumes										
140th St EB	5	A	2	10	B	11	B	5	11	B
Connemara Trl WB	9	A	4			6	A	3		
CSAH 33 NB	13	B	9			9	A	6		
CSAH 33 SB	6	A	2			14	B	10		
Single Lane Roundabout - 2040 Volumes										
140th St EB	5	A	2	11	B	11	B	4	11	B
Connemara Trl WB	10	B	4			6	A	2		
CSAH 33 NB	14	B	10			9	A	6		
CSAH 33 SB	6	A	2			15	C	9		

The intersection is anticipated to operate at LOS B or better for the overall vehicular delay under single lane roundabout control. Delays and queues are shown to increase as traffic volumes increase at the intersection. Approach delays are anticipated to operate at LOS C or better during the peak hours. Maximum queues are anticipated to be a few vehicles longer than anticipated under AWSC, with a maximum queue reaching up to 250 feet during the AM peak hour peak hour with 2040 forecasted volumes.

Overall, the single-lane roundabout alternative is anticipated to operate similar to the AWSC under the existing and forecasted traffic volumes.

Sensitivity Analysis

A sensitivity analysis for the forecasted volumes was performed by growing the collected volume and turning movement data by 15%, the common standard for maximum error for daily variation, especially in 20-year forecast models. The volumes used in the sensitivity analysis represent the worst-case growth rates of the 2040 forecasted volumes. The existing, forecast, and sensitivity volumes are shown in Table 6 below.

Table 6: Forecast vs. Sensitivity AADT

Street	Leg	MnDOT Most Recent AADT		2040 Forecast Volumes	Sensitivity Volumes
		Year			
Connemara Trail	East	6000	2018	6500	7400
140th Street W	West	7400	2018	7500	9100
CSAH 33	South	10600	2016	11800	13000
	North	8100	2016	9200	10000
Daily Entering Vehicles		16050		17500	19750

Table 7 shows the anticipated traffic results for the Do-Nothing alternative for the sensitivity analysis traffic volumes.

Table 7: Do Nothing Sensitivity Analysis Traffic Operations Results

Approach	AM Peak Hour					PM Peak Hour				
	LOS by Approach		95\% Queue (veh)	LOS		LOS by Approach		95\% Queue (veh)	LOS	
	Delay	LOS		Delay	LOS	Delay	LOS		Delay	LOS
Do Nothing - 15\% Sensitivity Volumes										
140th St EB	9	A	3	13	B	17	C	6	21	C
Connemara Trl WB	11	B	4			17	c	6		
CSAH 33 NB	15	C	6			15	C	4		
CSAH 33 SB	12	B	3			31	D	10		

The Do-Nothing Alternative is anticipated to see greater depreciations in traffic operations under the 15% higher than forecasted volumes. Overall and approach delays are anticipated to remain at acceptable levels under these increased traffic volumes. It is noted that several approaches could experience delays that result in LOS C/D, still acceptable service levels.

Table 8 shows the anticipated traffic results for the single-lane roundabout alternative with the 15\% sensitivity analysis traffic volumes.
Table 8: Single-Lane Roundabout Sensitivity Analysis Traffic Operations Results

Approach	AM Peak Hour					PM Peak Hour				
	LOS by Approach		95% Queue (veh)	Intersection LOS		LOS by Approach		95\%Queue(veh)	Intersection LOS	
	Delay	LOS		Delay	LOS	Delay	LOS		Delay	LOS
Single Lane Roundabout - 15\% Sensitivity Volumes										
140th St EB	6	A	2	14	B	17	C	9	17	C
Connemara Trl WB	13	B	7			8	A	3		
CSAH 33 NB	21	C	19			12	B	6		
CSAH 33 SB	6	A	2			26	D	19		

The single-lane roundabout is anticipated to sustain acceptable operations to under the 15% higher than forecasted volumes. Again, several approaches reach the LOS C/D thresholds. The maximum queue length is approximately double those modeled under AWSC, but delays are lower, indicating a shorter backup period and a moving queue.
Traffic volumes above the sensitivity volumes are not anticipated but both the single-lane roundabout and all-way stop would be anticipated to reach unacceptable levels of delay. If volumes increase further than anticipated, an unbalanced 2×1 roundabout may be an option. However, it is unlikely that traffic volumes will reach these levels within the 20-year analysis period.

VISSIM Analysis

The proposed roundabout's proximity to the intersection of Delta Avenue/Delta Place warrants an analysis of the interaction between the two intersections. Delta Avenue is approximately 235 feet east of the CSAH 33 intersection, creating potential for westbound queues blocking access at this intersection, as well as potentially limiting acceptable gaps in traffic for motorists exiting Delta Avenue. VISSIM analysis software was used to best assess this interaction and to understand any operations issues that may arise during the peak hours. ARCADY does not have the ability to simulate multiple intersections or the interactions between those intersections, but the software does provide reliable roundabout operations results during peak conditions. In estimating Delta Avenue traffic, directional entering and exiting volumes from Delta Place were obtained from StreetLight InSight software and calculated based on turning movement count data at the CSAH 33 at $140^{\text {th }}$ Street intersection.

VISSIM analysis conducted for the AM and PM peak hours under 2040 forecast volumes anticipates that the roundabout operates at overall LOS A during both peak periods, an improvement upon the predicted

Name: CSAH 33 \& $140^{\text {th }}$ Street/Connemara Trail RJR
Date: October 1, 2020
Page: 10
LOS B by the ARCADY analysis. Similarly, VISSIM analysis anticipates that all movements operate at LOS B or better, while ARCADY analysis shows movements operating at LOS C or better. Predicted queueing patterns are similar between the two software simulations, however, only VISSIM can predict average queues. Average queues anticipated are 50 feet or less on all approaches during the peak periods, signifying that 'rolling queues' are occurring. VISSIM analysis anticipates notable southbound queues originating from the $140^{\text {th }}$ Street roundabout that may reach a maximum of 450 feet during the PM peak hour. However, average queues on this approach are anticipated to measure 50 feet, signifying that for most of the peak period operations on this approach will be improved from the AWSC condition and the longer queues would only be anticipated to occur one time or less during the peak hour. The summarized results of the VISSIM analysis can be found in Appendix D of the RJR. Summary tables of the VISSIM operations results for the $140^{\text {th }}$ Street single lane roundabout are shown in Tables 9 and 10 below.
Table 9: VISSIM Single-Lane Roundabout Traffic Operations Results - AM Peak

Location	Aprch	Total Delay by Movement (sec/veh)			Level of Service by Movement			LOS by Approach		LOS		Queuing (feet)		
		L	T	R	L	T	R	Delay	LOS	Delay	LOS	Storage	Avg	Max
CSAH 33 (Diamond Path) at 140th St/Connemara Trl Single Lane Roundabout	EB	3	2	2	A	A	A	2	A	4	A	900	25	125
	WB	8	9	9	A	A	A	9	A			150	25	300
	NB	4	4	4	A	A	A	4	A			650	25	275
	SB	3	3	2	A	A	A	3	A			900	25	125

Table 10: VISSIM Single-Lane Roundabout Traffic Operations Results - PM Peak

Location	Aprch	Total Delay by Movement (sec/veh)			Level of Service by Movement			LOS by Approach		LOS		Queuing (feet)		
		L	T	R	L	T	R	Delay	LOS	Delay	LOS	Storage	Avg	Max
CSAH 33 (Diamond Path) at 140th St/Connemara TrI Single Lane Roundabout	EB	12	15	14	B	B	B	14	B	8	A	900	50	375
	WB	4	4	4	A	A	A	4	A			150	25	200
	NB	5	5	4	A	A	A	5	A			650	25	250
	SB	10	9	9	B	A	A	9	A			900	50	450

Operations analysis also considered the proximity of Delta Avenue to CSAH 33 to ensure that adequate gaps are provided for exiting traffic to make a left turn onto Connemara Trail. Analysis anticipates that under 2040 volumes average northbound delays at Delta Avenue are 20 seconds per vehicles or LOS C during the AM peak hour indicating that there are adequate gaps in oncoming traffic for Delta Avenue traffic. Westbound queues at the CSAH 33 roundabout are anticipated to average 25 feet during the AM peak hour with maximum queues of 300 feet resulting in periodic blockage of Delta Avenue. Further investigation was conducted and determined that Delta Avenue may be blocked by these queues for up to eight non-consecutive minutes of the AM peak hour and up to one minute of the PM peak hour.

Design Considerations

Due to relatively narrow right-of-way at the intersection proper and existing landscaping, fences, and other obstructions encroaching on the right-of-way, preliminary design considered shifting the center of the roundabout to avoid costly impacts to all four corners. It was found that shifting the roundabout to the northwest minimizes impacts to the properties east and south of CSAH 33 by focusing impacts to the west and north side of CSAH 33 where there is more unused space available. The shift also helps avoid costly impacts to the existing overhead utility lines and poles along the east side of CSAH 33.
Furthermore, shifting the roundabout west of center creates more distance between CSAH 33 and Delta Avenue which allows for full development of an eastbound left turn lane serving Delta Place and provides more time for users to determine where acceptable gaps in oncoming traffic are present to make safe movements onto Connemara Trail from Delta Avenue and Delta Place.

Date: October 1, 2020
Page: 11
Bicycle entry and exit ramps, or access to the trail at intersecting streets will be provided on all legs of the intersection to allow for on-street bicyclists to utilize the trail network and marked pedestrian crossings to navigate the roundabout and avoid using the circulatory roadway.
MVTA bus stops will be accommodated for on the south leg of the roundabout. Due to the conversion to a three-lane section, space is made available for dedicated bus pull-in/out areas where buses can safely pick-up and drop-off riders without impeding traffic.

Recommendations

Analysis of the existing crash history reveals the need for safety countermeasure for the high number of observed left turn and right-angle crashes. The existing all-way stop control is not anticipated to be able to safely serve the forecasted traffic at the intersection. Operations analysis of a single-lane roundabout shows a roundabout treatment would be anticipated to maintain acceptable traffic operations with area traffic growth as well as provide significant safety benefits. The roundabout effectively eliminates the potential for right-angle and left turn crashes that are being experienced at the intersection. Similarly, pedestrian safety is better accommodated by creating two-stage crossings and decreasing the crossing distances on each leg of the intersection. The County has implemented roundabouts in similar environments in numerous locations across the County and strongly supports the installation of a roundabout intersection at CSAH 33 and $140^{\text {th }}$ Street/Connemara Trail.

A sensitivity analysis of the forecasted growth was conducted and determined that a single-lane roundabout is anticipated to have the capacity to provide acceptable operations on all approaches if a higher traffic growth scenario is realized.

RJR Appendix A

Traffic Count Data \& Forecasting

RJR Appendix B

Warrants Analysis

SIGNAL WARRANTS ANALYSIS

2019 Volumes
LOCATION: Apple Valley
COUNTY: Dakota REF. POINT:

DATE: 9/12/2019
OPERATOR: MSL
Minor Rights Excluded

THRESHOLDS 1A/1B:

			420/630			140/70		140/70	
HOUR	MAJOR APP. 1	MAJOR APP. 3	$\begin{gathered} \hline \text { TOTAL } \\ 1+3 \end{gathered}$	MAJOR 1A/1B	MINOR APP. 2	MINOR 2 1A/1B	MINOR APP. 4	MINOR 4 1A/1B	MET SAME 1A/1B
0:00-1:00	7	20	27	1	6	1	6	/	1
1:00-2:00	4	10	14	1	4	1	3	1	I
2:00-3:00	3	9	12	1	9	1	2	1	1
3:00-4:00	15	5	20	/	1	I	3	,	,
4:00-5:00	47	8	55	1	4	1	19	1	I
5:00-6:00	181	39	220	/	6	1	59	1	I
6:00-7:00	491	110	601	X/	29	I	148	X/X	X/
7:00-8:00	628	206	834	X/X	121	/X	220	X/X	X/X
8:00-9:00	443	183	626	X/	80	/X	193	X/X	X/
9:00-10:00	373	186	559	X/	52	1	189	X/X	X/
10:00-11:00	264	134	398	I	61	1	102	/X	I
11:00-12:00	225	146	371	1	74	/X	101	/X	I
12:00-13:00	273	187	460	X/	92	/X	130	/X	I
13:00-14:00	224	215	439	X/	98	/X	121	/X	I
14:00-15:00	334	259	593	X/	131	/X	131	/X	I
15:00-16:00	392	400	792	X/X	168	X/X	176	X/X	X/X
16:00-17:00	465	562	1027	X/X	213	X/X	225	X/X	X/X
17:00-18:00	344	441	785	X/X	220	X/X	213	X/X	X/X
18:00-19:00	254	278	532	X/	183	X/X	169	X/X	X/
19:00-20:00	189	185	374	1	152	X/X	109	/X	I
20:00-21:00	141	170	311	1	120	/X	68	1	I
21:00-22:00	98	121	219	1	74	/X	43	1	I
22:00-23:00	51	72	123	1	30	1	20	1	I
23:00-24:00	22	46	68	1	18	1	8	1	1
Met (Hr) Required (Hr)									
Warrant 1A	8	8		Satisfied					
Warrant 1B	4	8		Not satisfied					
Warrant 2	5	4		Satisfied					
Warrant 3	2	1		Satisfied					
Warrant 7	12	8		Satisfied,	eck acci	nt record			

ALL WAY STOP WARRANT
2019 Volumes
LOCATION: Apple Valley COUNTY: Dakota REF. POINT:

DATE: 9/12/2019

OPERATOR: MSL
0.70 FACTOR USED?

Yes

210
140

HOUR	MAJOR APP. 1	MAJOR APP. 3	MINOR APP. 2	MINOR APP. 4	$\begin{gathered} \text { MAJOR TOTAL } \\ \Sigma \text { (APP. } 1 \text { \& APP. 3) } \end{gathered}$	MINOR TOTAL APP. 2 + APP.	WARRANT MET
0:00-1:00	7	20	6	6	27	12	1
1:00-2:00	4	10	4	3	14	7	/
2:00-3:00	3	9	9	2	12	11	1
3:00-4:00	15	5	1	3	20	4	/
4:00-5:00	47	8	4	19	55	23	/
5:00-6:00	181	39	6	59	220	65	X/
6:00-7:00	491	110	29	148	601	177	X/X
7:00-8:00	628	206	121	220	834	341	X/X
8:00-9:00	443	183	80	193	626	273	X/X
9:00-10:00	373	186	52	189	559	241	X/X
10:00-11:00	264	134	61	102	398	163	X/X
11:00-12:00	225	146	74	101	371	175	X/X
12:00-13:00	273	187	92	130	460	222	X/X
13:00-14:00	224	215	98	121	439	219	X/X
14:00-15:00	334	259	131	131	593	262	X/X
15:00-16:00	392	400	168	176	792	344	X/X
16:00-17:00	465	562	213	225	1027	438	X/X
17:00-18:00	344	441	220	213	785	433	X/X
18:00-19:00	254	278	183	169	532	352	X/X
19:00-20:00	189	185	152	109	374	261	X/X
20:00-21:00	141	170	120	68	311	188	X/X
21:00-22:00	98	121	74	43	219	117	X/
22:00-23:00	51	72	30	20	123	50	/
23:00-24:00	22	46	18	8	68	26	1
Met (Hr) Required (Hr)							

REMARKS:

Speed	Approach Description	Lanes
45	Major App1: NB CSAH 33	3
45	Major App3: SB CSAH 33	3
45	Minor App2: EB 140th Street W	2
35	Minor App4: WB Connemara Trail	2

Minor Rights Excluded

SIGNAL WARRANTS ANALYSIS

2030 Volumes
LOCATION: Apple Valley
COUNTY: Dakota REF. POINT:

DATE: 9/12/2019
OPERATOR: MSL
Minor Rights Excluded

THRESHOLDS 1A/1B:

THRESHOLDS			420/630			140/70 140/70			
HOUR	MAJOR APP. 1	MAJOR APP. 3	$\begin{gathered} \hline \text { TOTAL } \\ 1+3 \end{gathered}$	MAJOR 1A/1B	MINOR APP. 2	$\begin{gathered} \hline \text { MINOR } 2 \\ \text { 1A/1B } \end{gathered}$	MINOR APP. 4	MINOR 4 1A/1B	$\begin{array}{\|c\|} \hline \text { MET SAME } \\ \text { 1A/1B } \end{array}$
0:00-1:00	8	21	29	1	5	1	6	1	I
1:00-2:00	5	10	15	1	4	1	3	1	1
2:00-3:00	3	9	12	1	8	1	2	1	1
3:00-4:00	16	5	21	/	1	,	3	1	I
4:00-5:00	53	8	61	1	4	1	18	1	1
5:00-6:00	205	41	246	I	6	1	58	1	1
6:00-7:00	571	117	688	X/X	27	1	146	X/X	X/X
7:00-8:00	731	218	949	X/X	109	/X	219	X/X	X/X
8:00-9:00	509	193	702	X/X	72	/X	193	X/X	X/X
9:00-10:00	423	196	619	X/	46	1	191	X/X	X/
10:00-11:00	299	142	441	X/	54	1	102	/X	I
11:00-12:00	254	154	408	1	66	1	101	/X	I
12:00-13:00	307	198	505	X/	83	/X	130	/X	I
13:00-14:00	253	227	480	X/	87	/X	121	/X	I
14:00-15:00	376	274	650	X/X	117	/X	131	/X	/X
15:00-16:00	438	422	860	X/X	150	X/X	177	X/X	X/X
16:00-17:00	519	593	1112	X/X	191	X/X	225	X/X	X/X
17:00-18:00	390	466	856	X/X	197	X/X	214	X/X	X/X
18:00-19:00	285	294	579	X/	164	X/X	166	X/X	X/
19:00-20:00	209	196	405	1	136	/X	109	/X	I
20:00-21:00	156	179	335	1	107	/X	68	1	1
21:00-22:00	110	128	238	1	66	1	43	1	1
22:00-23:00	57	76	133	1	27	1	19	1	I
23:00-24:00	26	49	75	1	16	1	8	1	1
Met (Hr) Required (Hr)									
Warrant 1A	8	8		Satisfied					
Warrant 1B	7	8		Not satisfie					
Warrant 2	7	4		Satisfied					
Warrant 3	3	1		Satisfied					
Warrant 7	12	8		Satisfied,	eck acci	nt record			

ALL WAY STOP WARRANT
2030 Volumes
LOCATION: Apple Valley COUNTY: Dakota REF. POINT:

DATE: 9/12/2019

OPERATOR: MSL
0.70 FACTOR USED?

Yes

210
140

HOUR	MAJOR APP. 1	MAJOR APP. 3	MINOR APP. 2	MINOR APP. 4	MAJOR TOTAL Σ (APP. 1 \& APP. 3)	MINOR TOTAL APP. 2 + APP. 4	WARRANT MET
0:00-1:00	8	21	5	6	29	11	/
1:00-2:00	5	10	4	3	15	7	/
2:00-3:00	3	9	8	2	12	10	/
3:00-4:00	16	5	1	3	21	4	1
4:00-5:00	53	8	4	18	61	22	1
5:00-6:00	205	41	6	58	246	64	X/
6:00-7:00	571	117	27	146	688	173	X/X
7:00-8:00	731	218	109	219	949	328	X/X
8:00-9:00	509	193	72	193	702	265	X/X
9:00-10:00	423	196	46	191	619	237	X/X
10:00-11:00	299	142	54	102	441	156	X/X
11:00-12:00	254	154	66	101	408	167	X/X
12:00-13:00	307	198	83	130	505	213	X/X
13:00-14:00	253	227	87	121	480	208	X/X
14:00-15:00	376	274	117	131	650	248	X/X
15:00-16:00	438	422	150	177	860	327	X/X
16:00-17:00	519	593	191	225	1112	416	X/X
17:00-18:00	390	466	197	214	856	411	X/X
18:00-19:00	285	294	164	166	579	330	X/X
19:00-20:00	209	196	136	109	405	245	X/X
20:00-21:00	156	179	107	68	335	175	X/X
21:00-22:00	110	128	66	43	238	109	X/
22:00-23:00	57	76	27	19	133	46	/
23:00-24:00	26	49	16	8	75	24	1
$\begin{array}{lcccl} & \text { Met (Hr) } & \text { Required (Hr) } & \\ \text { Allway Stop Warrant: } & 15 & 8 & \text { Satisfied }\end{array}$							

REMARKS: \qquad
\qquad

SIGNAL WARRANTS ANALYSIS

2040 Volumes
LOCATION: Apple Valley
COUNTY: Dakota REF. POINT:

DATE: 9/12/2019
OPERATOR: MSL
Minor Rights Excluded

THRESHOLDS 1A/1B:

THRESHOLDS			420/630			140/70 140/70			
HOUR	MAJOR APP. 1	MAJOR APP. 3	$\begin{gathered} \hline \text { TOTAL } \\ 1+3 \end{gathered}$	MAJOR 1A/1B	MINOR APP. 2	$\begin{gathered} \hline \text { MINOR } 2 \\ \text { 1A/1B } \end{gathered}$	MINOR APP. 4	MINOR 4 1A/1B	$\begin{array}{\|c\|} \hline \text { MET SAME } \\ \text { 1A/1B } \end{array}$
0:00-1:00	8	22	30	1	5	1	6	1	I
1:00-2:00	5	11	16	1	4	1	3	1	1
2:00-3:00	3	10	13	1	8	1	2	1	1
3:00-4:00	17	5	22	/	1	1	3	1	I
4:00-5:00	55	9	64	1	4	1	18	1	1
5:00-6:00	215	43	258	I	6	1	56	1	1
6:00-7:00	601	123	724	X/X	27	1	144	X/X	X/X
7:00-8:00	770	230	1000	X/X	109	/X	219	X/X	X/X
8:00-9:00	534	203	737	X/X	72	/X	194	X/X	X/X
9:00-10:00	445	206	651	X/X	46	1	192	X/X	X/X
10:00-11:00	314	150	464	X/	54	1	102	/X	1
11:00-12:00	267	162	429	X/	66	1	100	/X	I
12:00-13:00	322	209	531	X/	83	/X	130	/X	1
13:00-14:00	267	240	507	X/	87	/X	122	/X	I
14:00-15:00	395	288	683	X/X	117	/X	131	/X	/X
15:00-16:00	460	447	907	X/X	150	X/X	177	X/X	X/X
16:00-17:00	546	627	1173	X/X	191	X/X	227	X/X	X/X
17:00-18:00	412	492	904	X/X	197	X/X	215	X/X	X/X
18:00-19:00	301	311	612	X/	164	X/X	165	X/X	X/
19:00-20:00	221	207	428	X/	136	/X	109	/X	I
20:00-21:00	165	190	355	1	107	/X	67	1	1
21:00-22:00	116	135	251	1	66	1	42	1	1
22:00-23:00	61	80	141	1	27	1	20	1	I
23:00-24:00	27	52	79	1	16	1	8	1	1
Met (Hr) Required (Hr)									
Warrant 1A	8	8		Satisfied					
Warrant 1B	8	8		Satisfied					
Warrant 2	7	4		Satisfied					
Warrant 3	4	1		Satisfied					
Warrant 7	12	8		Satisfied,	eck acci	nt record			

ALL WAY STOP WARRANT
LOCATION: Apple Valley COUNTY: Dakota REF. POINT:

DATE: 9/12/2019

OPERATOR: MSL
0.70 FACTOR USED?

Yes

210
140

HOUR	MAJOR APP. 1	MAJOR APP. 3	MINOR APP. 2	MINOR APP. 4	$\begin{gathered} \text { MAJOR TOTAL } \\ \Sigma(\text { APP. } 1 \& \text { APP. 3) } \end{gathered}$	MINOR TOTAL APP. $2+$ APP. 4	WARRANT MET
0:00-1:00	8	22	5	6	30	11	/
1:00-2:00	5	11	4	3	16	7	/
2:00-3:00	3	10	8	2	13	10	1
3:00-4:00	17	5	1	3	22	4	1
4:00-5:00	55	9	4	18	64	22	/
5:00-6:00	215	43	6	56	258	62	X/
6:00-7:00	601	123	27	144	724	171	X/X
7:00-8:00	770	230	109	219	1000	328	X/X
8:00-9:00	534	203	72	194	737	266	X/X
9:00-10:00	445	206	46	192	651	238	X/X
10:00-11:00	314	150	54	102	464	156	X/X
11:00-12:00	267	162	66	100	429	166	X/X
12:00-13:00	322	209	83	130	531	213	X/X
13:00-14:00	267	240	87	122	507	209	X/X
14:00-15:00	395	288	117	131	683	248	X/X
15:00-16:00	460	447	150	177	907	327	X/X
16:00-17:00	546	627	191	227	1173	418	X/X
17:00-18:00	412	492	197	215	904	412	X/X
18:00-19:00	301	311	164	165	612	329	X/X
19:00-20:00	221	207	136	109	428	245	X/X
20:00-21:00	165	190	107	67	355	174	X/X
21:00-22:00	116	135	66	42	251	108	X/
22:00-23:00	61	80	27	20	141	47	/
23:00-24:00	27	52	16	8	79	24	I
Met (Hr) Required (Hr)							

REMARKS:

Speed	Approach Description	Lanes
45	Major App1: NB CSAH 33	3
45	Major App3: SB CSAH 33	3
45	Minor App2: EB 140th Street W	2
35	Minor App4: WB Connemara Trail	2

2040 Volumes
Minor Rights Excluded

RJR Appendix C
 Intersection Safety Screening

Intersection Safety Screening

Intersection: C.S.A.H. 33 at 140th Street W/Connemara Trail

Crash Data, 2016-2018.

Crashes by Crash Severity		Intersection Characteristics	
Fatal	0	Entering Volume	16,100
Incapacitating Injury	0	Traffic Control	All stop
Non-incapacitating Injury	1	Environment	Urban
Possible Injury	2	Speed Limit	50 mph
Property Damage	11		
Total Crashes	14		
Annual crash cost $=$ \$139,867			
Statewide Comparison		All Way Stop	
Total Crash Rate		Fatal \& Serious Injury Crash Rate	
Observed	0.79	Observed	0.00
Statewide Average	0.34	Statewide Average	0.72
Critical Rate	0.73	Critical Rate	6.14
Critical Index	1.08	Critical Index	0.00

The observed crash rate is the number of crashes per million entering vehicles (MEV). The critical rate is a statistical comparison based on similar intersections statewide. An observed crash rate greater than the critical rate indicates that the intersection operates outside the expected, normal range. The critical index reports the magnitude of this difference.

The observed total crash rate for this period is 0.79 per MEV; this is 1.1 times the critical rate. If crashes were reduced by 1 over three years, this intersection would perform within normal range.

The observed fatal and serious injury crash rate for this period is 0.00 per 100 MEV ; this is 100% below the critical rate. The intersection operates within the normal range.

RJR Appendix D
 Operations Analysis Results
 (SimTraffic Reports available upon request)

	Year	PeakHour	Intersection Delay (1.)		NBL		NBT		NBR		SBL		SBT		SBR		EBL		EBT		EBR		WBL		Wbt		WBR		Maximum Delay-Los $(2$.		$\begin{aligned} & \text { Limiting } \\ & \text { Moveme } \end{aligned}$	Max Approach Queue						
Intersection					Direction	Average			Max																													
	2019	AM	10	B			8	A			13	B	6	A	6	A	11	B	3	A	7	A	11	B	4	A	9	A	11	B	5	A	13	B	NBT	NBT	75	
		PM	13	B	12	B	13	B	6	A	11	B	17	c	10	B	11	B	14	B	8	A	14	B	${ }^{13}$	B	5	A	17	c	SBT	SBT	75					
CSAH 3 \& 140 h Street W/Connemara Trail	2030	AM	10	B	8	A	13	B	7	A	7	A	11	B	3	A	8	A	11	B	4	A	10	B	11	B	5	A	13	B	NBT	NBTR	75	$\frac{125}{125}$				
All-Way Sop Controlled		${ }_{\text {PM }}$	${ }_{14}^{14}$	${ }^{\text {B }}$	${ }^{12}$	B	$\frac{14}{15}$	B	${ }_{6}$	A	$\frac{11}{8}$	B	${ }^{18}$	${ }^{\text {c }}$	$\frac{9}{4}$	A	${ }^{12}$	B	$\frac{15}{12}$	${ }^{\text {C }}$	4	A	$\frac{15}{10}$	${ }^{\text {c }}$	$\frac{14}{11}$	B	5	A	${ }_{1}^{18}$	${ }^{\text {c }}$	$\frac{\text { SBT }}{\text { NBT }}$	$\frac{\text { SBT }}{\text { NBT }}$	${ }^{100}$					
	2040	PM	14	B	13	B	14	B	${ }_{6}$	A	12	${ }^{\text {B }}$	19	${ }_{\text {c }}$	10	B	14	A	15	c	9	A	15	${ }_{c}$	14	в	4	A	19	c	SBT	${ }_{\text {SBT }}$	100	175				

1. Delay in seconds per vehicle

2. Maximum delay and LOS on any approach andor mo

Table 2: Peak Hour Quueus By Movement-Existing Conditions Geometry

Location	Aprch	Demand volumes				Modeled Volumes				Model - Demand					$\begin{array}{\|c\|} \hline \text { Total Delay by } \\ \text { Movement (sec/veh) } \\ \hline \end{array}$			Level of Service by Movement			$\begin{gathered} \text { LOS by } \\ \text { Approach } \end{gathered}$		LOS		Queuing (feet)		
		L	T	R	Total	L	T	R	Total	L	T	R	Total	\%	L	T	R	L	T	R	Delay	Los	Delay	Los	Storage	Avg	Max
CSAH 33 (Diamond Path) at 140th St/Connemara Trl Single Lane Roundabout	${ }^{\text {EB }}$	20	101	111	232	17	96	118	231	-3	-5	7	-1	0\%	3	2	2	A	A	A	943	A	4	A	900	25	125
	wb	71	156	125	352	68	159	123	350	-3	3	-2	-2	-1\%	8	9	9	A	A	A		A			150	25	300
	NB	120	520	56	696	126	514	56	696	6	-6	0	0	0\%	4	4	4	A	A	A		A			650	25	275
	SB	31	180	24	235	34	175	24	233	3	-5	0	-2	-1\%	3	3	2	A	A	A		A			900	25	125
Connemara Trl at Delta Ave Stop Controlled	$\begin{aligned} & \text { EB } \\ & \text { WB } \end{aligned}$	83	$\begin{aligned} & \hline 188 \\ & 269 \end{aligned}$	15	188	82	$\begin{aligned} & 186 \\ & 269 \end{aligned}$	16	$\begin{aligned} & 186 \\ & 269 \\ & 98 \\ & 98 \end{aligned}$	-1	$\begin{gathered} -2 \\ 0 \end{gathered}$	1	$\begin{array}{\|c\|} \hline-2 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{c\|} \hline-1 \% \\ 0 \% \\ 0 \% \\ \hline \end{array}$		01		A	A	A	$\begin{gathered} \hline 0 \\ 1 \\ 20 \\ \hline \end{gathered}$	A	4	A		0	0
	$\begin{aligned} & \text { WB } \\ & \text { NB } \end{aligned}$				269 98										22		13	A	A	A		A				25 25	50 125

Westbound Connemara Trl Queuing	
Queue Length (ft)	Number of Minutes
$0-50$	35
$50-100$	12
$100-150$	6
>150	8

Appendix B: Public Engagement Materials

COUNTY ROAD 33 Roundabout Feasibility Study

(1) Bo웅ㅇN \& MENK

INTRODUCTION

The County has periodically evaluated needs and options for this 4-way-stop intersection since 2008. Today's traffic volumes and anticipated growth are now causing increased concerns about safety and delays. Preliminary analysis and recent experience suggest a roundabout should be a good long-term solution.

Goals

> Improve safety
> Enhance pedestrian usability
> Maintain mobility
> Encourage lower speeds

Tentative Timeline

2020: Feasibility study and preliminary engineering design
2021: Final engineering design, including right-of-way and
utility details
2022: Construction

Project Contact

Doug Abere, Project Manager
doug.abere@co.dakota.mn.us

STUDY OVERVIEW

The primary focus of this study is the intersection of Diamond Path and 140th Street/Connemara Trail to determine:

How is the 4-way stop working now? How will it work in the future?

Is a roundabout appropriate for this location?

Other intersection considerations:
> Connemara Trail was recently converted from a 4-lane to a 3-lane roadway
>140 th Street is currently a 4-lane roadway but traffic volumes are compatible with a 3-lane roadway
> Diamond Path, north of 140th Street/Connemara Trail, does not have a sidewalk or trail
> The roundabout would be similar to the one north of Farmington at Highway 3 (Chippendale Ave) and 195th St/190th St

Daily Traffic Volumes

OPERATIONS

At this 4-way stop intersection, the typical maximum backup is 5 vehicles. A roundabout would likely have the same backup length but traffic flow would improve (shorter wait times).

SAFETY

High number of right-angle and turning crashes. These type of crashes are not typical at an all-way stop-controlled intersection.

COUNTY ROAD 33 Roundabout Feasibility Study

*ROSEMOUNT
SPIRIT OF PRIDE AND PROGRESS

Apple
Valley
(11) BOLTON

CONFLICT POINTS

The high number of crashes at this intersection may be due to the high number of lanes and resulting conflict points.

A roundabout would:
> reduce the number of minor and major conflict points for both vehicles and pedestrians
> reduce the number of right-angle crashes, which tend to be more severe

Roundabouts reduce crash risk by reducing the number of conflict points.

Vehicle Conflict Points

Pedestrian Conflict Points

All-Way Stop Intersection (existing)

Single-Lane Roundabout

CRASH RATES

Intersection Crash Rate

Crash rate is the number of crashes per million vehicles entering the intersection. At this intersection, the crash rate is more than double that of a typical all-way stop intersection.

Risk of Fatal or Serious Injury Crashes

Fortunately, there have been no fatal or serious injury crashes at the intersection. But we must consider the risks. The number of personal injury crashes (not serious) is a concern for the future, resulting in a crash severity rate of 1.09 , double the statewide average.

The many Conflict points and crash history at the intersection indicate more safety risk than typical for an all-way stop.

WHY A ROUNDABOUT?

What is it?

A roundabout is a one-way circular intersection where traffic flows around a center island. At entry, drivers yield to traffic in the roundabout. All drivers must yield to pedestrians in crosswalks.

Advantages:
> Fewer injury crashes \& fatalities
> Increased pedestrian safety
> Less vehicle delay and pollution

Benefits

> All vehicles move through the intersection at 15-20 mph
> Greater human interaction between drivers and pedestrians
> Two-stage pedestrian crossing
> Simplified decision making for drivers and pedestrians
> Effective in moving heavy left turning traffic
> Reduces traffic congestion, delays, and serious injury crashes

Challenges

> Footprint may be larger than a traditional intersection
> Right-of-way needs
> Driver understanding of yield upon entry
> Aggressive driving

Dakota County

 Goals Addressedprovidesare
Phaclitilis

*ROSEMOUNT
SPIRIT OFPRIDEAND PROGRESS

140th Street - Possible 4-Lane to 3-Lane Conversion

> Can handle existing and future traffic (up to 16,000 vehicles/day)
> 19-47\% reduction in crashes
> Reduced conflict chances, 3 vs. 6

> Safer street crossings
> Fewer lanes to cross
$>$ Traffic calming
> Improved emergency response time

Crossing only one
lane of traffic at a time reduces the risk of crashes and serious injuries.
-AARP

Conflict Points

BEFORE	AFTER
4 Lanes	3 Lanes

A 4-lane roadway has more conflict points than a 3-lane.

Pedestrian Crossing Safety

BOLTON

 Roundabout Feasibility Study
4-Lane to 3-Lane Conversion is Possible on 140th Street by Restriping Only

A 4-lane to 3-lane conversion reduces the number of lanes on a roadway to better utilize available space. Benefits include increased safety, reduced conflict points, and improved mobility.

Benefits of 3 Lanes

1 Shorter pedestrian crossing distance

Wide shoulder for bicycles \& emergency pull-off
(3) Protected left turns

Buffer zone between moving vehicles \& pedestriansAllows left turns to not impede through-traffic

COUNTY ROAD 33 Roundabout Feasibility Study

TRAIL CONSIDERATIONS

> Design for new roundabout will connect existing trails and provide crossings at all four streets.
> Currently there are no trails north of 140th Street/Connemara Trail (wide shoulder is sometimes used).
> New trails and roadway improvements to the north will be planned in studies beginning in 2024.
> Diamond Path (CR 33) to the north includes challenging terrain (grades and water features).
> Current roundabout design will anticipate possible trail connections to the north.
> What do you think? Are trails or roadway improvements needed to the north?

NEXT STEPS

Review input from this open house

Develop roundabout alternatives

Evaluate the impact of each alternative

Meet with residents \& stakeholders

Determine \& refine recommended alternative

Next open house in April/May

Long Term Plan

After completion of the feasibility study, preliminary design will occur. Next year the design will be finalized with construction currently planned for 2022.

REGIONAL CONTEXT

> Roadway classifications identify the functions for roads before determining street widths, speed limits, intersection control, or other design features.
> Non-transportation factors, such as land use and development, are also considered for planning and designing streets and highways.

SURVEY \& UTILITIES

0
Survey of the intersection area was completed in Fall 2019.

(2)
There are numerous utilities around the intersection.

The alternatives will review impacts to properties, utilities, and structures.

INTERSECTION TRAFFIC CONTROL

All-way stops are used for

> Moderate traffic volumes.
> Balanced traffic.
> Speed limits of 40 mph or less.

Drawbacks

> Inefficient and cause delay.
> Multiple lanes can increase crash risk.
> Increased crash risk when disregarded.
> Constant stopping/acceleration is noisy.

Traffic signals are used for
> Consistently high volume of traffic.
> Collector or arterial corridor intersections.

Drawbacks

> Introduces additional decision making.
$>$ Increased crash risk when disregarded.
> Increased risk of fatal or serious injury crashes.
> Creates delay, particularly for higher volume movements.
> Higher speeds.

Roundabouts are used for
> Moderate to high traffic volumes.
> Improving traffic flow.

Drawbacks

> May have higher construction cost and right-of-way needs.
> Potential for more property damage crashes.
> Not suitable for six-lane or principal arterial roadways.

Ocounty road 33

 Roundabout Feasibility Study
Open House Feedback

February 6, 2020 • 4:30-6:30 pm • Rosemount Community Center

About 3 out of 4 attendees supported a single-lane roundabout at the intersection of County Road 33 (Diamond Path) and 140th Street W/Connemara Trail.

8E! 20 writen comments \equiv Many verbal comments

Concerns about a having roundabout at this intersection

Pedestrian safety

Snow plowing

Usability by school buses
\& emergency vehicles

Proximity to Delta Ave \& Delta Place

Potential impact to private properties

Lack of experience using them

Increased traffic congestion

Cost of building

Other comments
> Existing intersection needs help
> Some prefer a traffic signal in place of a roundabout
> Accommodate existing neighborhood signs

> Support for pedestrian connection to the north

> Most in favor of conversion of 140th St to 3-lane roadway (like Connemara Trl)
> Desire for improved sight lines along Connemara Trl
(1) Bortion 8 MENK

INTRODUCTION

The County has periodically evaluated needs and options for this 4-way-stop intersection since 2008. Today's traffic volumes and anticipated growth are now causing increased concerns about safety and delays. Preliminary analysis and recent experience suggest a roundabout should be a good long-term solution.

Goals

> Improve safety
> Enhance pedestrian usability
> Maintain mobility
> Encourage lower speeds

Tentative Timeline

2020: Feasibility study and preliminary engineering design
2021: Final engineering design, including right-of-way and utility details
2022: Construction

Project Contact

Doug Abere, Project Manager
doug.abere@co.dakota.mn.us
952-891-7101

What You Can Do

> Review materials including drawings, maps and videos.
$>$ See a concept drawing of the roundabout.
$>$ Submit feedback using the online form.

COUNTY ROAD 33 Roundabout Feasibility Study

*ROSEMOUNT
SPIRIT OF PRIDE AND PROGRESS

(1) Bixitiv \& MENK

ROUNDABOUT FEATURES

A single-lane roundabout is designed to improve safety for all users.

Roundabout Rules

Drivers

$>$ Slow down.
> Yield to pedestrians
> Yield to vehicles already in the roundabout.
> Continue through roundabout until you reach your exit.

Yield to pedestrians when exiting a roundabout.

Pedestrians

> Cross only at crosswalks.
> Use the median island at the halfway point to check for approaching traffic.

Bicyclists

> Ride with traffic inside the roundabout or use the crosswalks appropriately.
> Follow same rules as vehicles when riding with traffic.BOLTON
KMENK

WHAT WE'VE HEARD

Open House Feedback

February 6, 2020 • 4:30-6:30 pm •Rosemount Community Center
Y29 attendess
E1 20 wititen comments
§ Many verbal comments

About 3 out of 4 attendees supported a single-lane roundabout at the intersection of County Road 33 (Diamond Path) and 140th Street W/Connemara Trail.

Concerns about a having roundabout at this intersection

\equiv Other comments

> Existing intersection needs help
> Some prefer a traffic signal in place of a roundabout
> Accommodate existing neighborhood signs
> Support for pedestrian connection to the north
> Most in favor of conversion of 140th Street to three-lane roadway (like Connemara Trail)
> Desire for improved sight lines along Connemara Trail

COUNTY ROAD 33 Roundabout Feasibility Study

COUNTY ROAD 33 N STUDY IN 2024

A new trail and other roadway improvements on County Road 33 (Diamond Path) between Pilot Knob Road and 140th Street/Connemara Trail will be considered in a study beginning in 2024. The right-of-way width, which ranges from 90 to 125 feet wide, and other conditions along the corridor will determine which improvement options can be used where.

100-ft total right-of-way
Roadway Options (Based on an average right-of-way width of 100 feet.)

Possible Options by Location
Trails and other roadway options appropriate along this stretch of road will depend upon right-of-way width, slope, and other conditions.

BOLTON

NEXT STEPS

The project team will:

Review additional input received through Spring 2020.

Refine recommended concept.

三 Write final report for study.

Long Term Plan

After completion of the feasibility study, preliminary design will occur. Next year the design will be finalized with construction currently planned for 2022.
\& MENK

Online Open House Feedback

Summary of comments received May 15-31, 2020

 θ 69comments submitted

39 respondents generally in support of roundabout concept
 8 respondents did not indicate support or opposition of concept
 22 respondents opposed roundabout concept

3 Reasons why people support the concept> Improved safety at intersection for all users>Better traffic flow> Traffic calming benefit> Improved safety for pedestrians> Provides trail to existing shoulders north of roundabout>Likes the re-striping of 140th Street to three lanes> Would feel comfortable using intersection again> Confusion at existing four-way stop

Ideas and Concerns

Concern how long it would take to build a roundabout
Concern about pedestrian safety at roundabout
Consider adding a right turn lane into Delta Avenue
Concern that raised center island of roundabout would obstruct sight lines

Frequently Asked Questions

Why change the existing all-way stop intersection?
Safety is the primary concern at this intersection. The crash rate is more than double that of a typical all-way stop intersection. Also, the risk of a fatal or serious injury crash is double the statewide average. Preliminary analysis suggested a roundabout would be a good longterm solution to achieve these goals:

- Improve safety for all users
- Enhance pedestrian usability
- Maintain mobility
- Encourage lower speeds

? Frequently Asked Questions (continued)

Why a roundabout instead of a traffic signal?

We've seen an increase in crossing-type or angle crashes at this intersection. These types of crashes are the most severe with the highest risk of severe injury or fatality. Signals have proven to be ineffective in reducing the number of angle crashes. Roundabouts remove major conflict points, reducing the severity of crashes.
Also, traffic signals allow for high speeds through intersections, increasing the risk of severe crashes, serious injuries, and fatalities. A roundabout will slow all drivers while minimizing stopping and delay.

Why a single-lane instead of double-lane roundabout?

A roundabout is a good solution at this location because the average number of vehicles entering the intersection is similar from all directions. A single-lane roundabout is preferred over a double-lane roundabout because a single-lane minimizes property impacts while still accommodating current and future traffic volumes.

Will a roundabout create gaps in traffic so I can exit my neighborhood?

During peak traffic in roundabouts, vehicles tend to cycle through in groups with some groups flowing through while others wait for the cycle to shift. The result are gaps between vehicles that are similar or even longer than from four-way stop intersections. That said, we understand that drivers today experience some delay while waiting to turn left onto County Road 33 (Diamond Path). The proposed roundabout will not add to this problem and may help. Further improvement will have to be addressed by other projects.

How would turns occur at Delta Avenue/Delta Place and Connemara Trail?

Left turns can be a complex issue in roadway design. The simplest traffic solution for the Delta Avenue/Delta Place intersection with Connemara Trail would be to prohibit all left turns and make the intersection right-in/right-out only. We propose instead to leave the Delta intersection open to all turning movements. A buffer provides space for lefts from Delta Avenue and Delta Place onto Connemara Trail. Dedicated left turns lanes on Connemara Trail provide access to Delta Avenue and Delta Place.

What other changes may occur?

The City of Apple Valley is proposing to convert 140th Street W. from four-lanes to three-lanes by re-striping, similar to what was done with Connemara Trail. Benefits include shorter crossings for pedestrians, wider shoulders, and dedicated left turns.

Recommendations to improve safety within school zones may result from a county-wide assessment currently underway. In addition, a study in 2024 to the north of 140th Street/Connemara Trail area will identify potential trail and roadway improvements.

What are the next steps?

After this feasibility study, the next step is preliminary design of the roundabout. Construction of the roundabout is tentatively planned for 2022.

Appendix C: $140^{\text {th }}$ Street Traffic Analysis

MEMORANDUM

Date: June 29, 2020
Subject: CSAH 33 at $140^{\text {th }}$ St/Connemara Trail Roundabout Feasibility Study $140^{\text {th }}$ Street Three-Lane Section Analysis

An analysis of the traffic operations of $140^{\text {th }}$ Street, between CSAH 33 (Diamond Path) and CSAH 31 (Pilot Knob Road), in Apple Valley, was conducted and considered the existing four-lane section and a proposed three-lane section. The corridor features five side street stop-controlled intersections the commercial and residential areas. The is one pedestrian crossing located at Drummond Trail that connects to city parks. The proposed three-lane section consists of the restriping of the existing roadway to feature a 12' two-way left turn lane, two 11' lanes and 5' shoulders, see Appendix C for concept. Connemara Trail, east of CSAH 33, has recently been restriped to a three-lane section and has received positive feedback from the community.

Figure 1: Project Location Map

Data Collection

The intersection analysis utilized traffic data collected in September 2019. 13-hour turning movement counts were collected. The peak hours were used to analyze traffic operations at the study location. The AM peak hour was found to be from 7:00 to 8:00 AM and the PM peak hour was found to be from 4:00 to 5:00 PM. Existing ADT was estimated below from the counts collected. Traffic volume details can be found in Appendix A.

Operations

The intersection analysis utilized traffic data collected in September 2019. 13-hour turning movement counts were collected. The peak hours were used to analyze traffic operations at the study location. The AM peak hour was found to be from 7:00 to 8:00 AM and the PM peak hour was found to be from 4:00 to 5:00 PM. Existing ADT was estimated below from the counts collected. Traffic volume details can be found in Appendix A.

Date: June 29, 2020
Page: 2
The four- and three-lane scenarios were modeled using Synchro/SimTraffic and methods within the Highway Capacity Manual to determine Level of Service (LOS), average vehicle delays, and queue lengths. The AM and PM peak hour operations under 2019 traffic volumes and the existing four-lane section is summarized in Table 1, below. Full traffic modeling results can be found in Appendix B.

Table 1: 2019 Four-Lane Operations Summary

Intersection	Peak Hour	Intersection Delay (1.)		Maximum DelayLOS (2.)		Limiting Movement (3.)	Max Approach Queue				
				Direction	Average Queue (ft)		Max Queue (ft)				
141st Street W \& 140th Street W	AM	3	A			9	A	NBL	NBL/R	50	100
Sidestreet Stop Controlled	PM	4	A	13	B	NBL	NBL/R	50	125		
Essex Ave/Essex Trl \& 140th Street W	AM	2	A	8	A	NBL	SBL/T/R	50	75		
Sidestreet Stop Controlled	PM	2	A	10	B	SBT	NBL/T/R	50	75		
142nd Path W \& 140th Street W	AM	1	A	6	A	NBL	NBL/R	25	75		
Sidestreet Stop Controlled	PM	1	A	7	A	NBL	NBL/R	25	50		
140th Street W \& Drommond Trl	AM	0	A	6	A	SBL	SBL/R	25	75		
Sidestreet Stop Controlled	PM	1	A	7	A	SBL	SBL/R	25	75		
140th Street W \& Driftwood Ln	AM	2	A	7	A	SBL	SBL/R	25	50		
Sidestreet Stop Controlled	PM	1	A	7	A	SBL	SBL/R	25	50		

1. Delay in seconds per vehicle
2. Maximum delay and LOS on any approach and/or movement
3. Limiting Movement is the highest delay movement.

Analysis of the existing conditions reveals than all intersections and side street movements experience acceptable levels of delay during the peak hours. Table 2, below, summarizes the anticipated operations under a three-lane section and existing volumes.

Table 2: 2019 Three-Lane Operations Summary

Intersection	Peak Hour	Intersection Delay (1.)		Maximum DelayLOS (2.)		Limiting Movement (3.)	Max Approach Queue				
				Direction	Average Queue (ft)		Max Queue (ft)				
141st Street W \& 140th Street W	AM	3	A			9	A	NBL	NBL	NBL	NBL
Sidestreet Stop Controlled	PM	4	A	13	B	NBL	NBL/R	50	100		
Essex Ave/Essex Trl \& 140th Street W	AM	2	A	9	A	SBT	SBT	SBT	SBT		
Sidestreet Stop Controlled	PM	3	A	13	B	SBT	SBL/T/R	50	75		
142nd Path W \& 140th Street W	AM	1	A	7	A	NBL	NBL	NBL	NBL		
Sidestreet Stop Controlled	PM	1	A	10	B	NBL	NBL/R	25	50		
140th Street W \& Drommond Trl	AM	1	A	6	A	SBL	SBL	SBL	SBL		
Sidestreet Stop Controlled	PM	1	A	7	A	SBL	SBL/R	25	75		
140th Street W \& Driftwood Ln	AM	1	A	6	A	SBL	SBL	SBL	SBL		
Sidestreet Stop Controlled	PM	1	A	6	A	SBL	SBL/R	25	50		

1. Delay in seconds per vehicle
2. Maximum delay and LOS on any approach and/or movement
3. Limiting Movement is the highest delay movement.

Analysis of the three-lane section shows little operational difference from the existing conditions, indicated that a four-lane section is not needed to carry the existing traffic using this segment of $140^{\text {th }}$ Street. All intersections and movements are anticipated to operate at acceptable levels under a three-lane section.

A three-lane section also provides notable vehicle and pedestrian safety improvements when compared to the existing four-lane section as there are fewer lanes of traffic for pedestrians to navigate and fewer conflict points at intersections.

Note, traffic forecasts on this segment of roadway, obtained from Dakota County, show little to no growth in volumes over the next 20 years. Unless unexpected levels of development and traffic growth occur in the area, a three-lane section can be expected to provide adequate capacity now and in years to come.
$140^{\text {th }}$ Street Appendix A
Turning Movement Data

$140^{\text {th }}$ Street Appendix B

Operations Analysis Summary Tables

Intersection ID	Intersection	$\begin{aligned} & \text { Peak } \\ & \text { Hour } \end{aligned}$	Intersection Delay (1.)		NBL		NBT		NBR		SBL		SBT		Movement Delay (sec/veh) SBR EBL				EBT		EBR		WBL		WBt		WBR		$\begin{array}{\|c} \text { Maximum Delay- } \\ \text { LOS (2.) } \end{array}$		Movement (3.)	Max Approach Queue				
					Direction	Average			Max Queue																											
	CSAH 33 \& 140th Street W/Connemara Trl Stop Controlled	AM	11	B																											14	B	NBT	NBT	75	175
1		PM	14	B	18	c																									SBT	SBT	100	175		
2	CSAH $31 \& 140$ th Street W	AM	28	C	27	C	22	C			5	A	30	C	30	C	6	A	44	D	45	D	28	c	37	D	47	D	36	D	47	D	WBT	NBT	250	550
2	Signalized Intersection	PM	65	E	38	D	20	C	3	A	25	C	34	c	7	A	70	E	114	F	195	F	37	D	44	D	30	c	195	F	EBR	EBTR	750	875		
3	141 st Street W \& 140th Street W	AM	3	A	9	A			6	A									4	A	3	A	3	A	1	A			9	A	NBL	NBL/R	50	100		
3	Stop Controlled	PM	4	A	13	в			6	A									4	A	4	A	6	A	1	A			13	B	NBL	NBL/R	50	125		
4	Essex Ave/Essex Tr \& 140th Street W	AM	2	A	8	A	8	A	3	A	7	A	8	A	4	A	2	A	1	A	1	A	2	A	1	A	0	A	${ }^{\text {\% }}$	A	NBL	SBLTTR	50	75		
4	Stop Controlled	PM	2	A	9	A	9	A	5	A	8	A	10	B	4	A	2	A	2	A	2	A	2	A	1	A	0	A	10	B	SBT	NBLTR	50	75		
5	142 d Path W \& 140th Street W	AM	-	A	6	A			3	A									,	A	1	A	2	A	0	A			6	A	NBL	NBL/R	25	75		
5	Stop Controlled	PM	1	A	7	A			3	A									1	A	2	A	2	A	0	A			7	A	NBL	NBL/R	25	50		
6	140 th Street W \& Drommond Trl	AM	0	A							6	A			3	A	2	A	0	A					0	A	0	A	6	A	SBL	SBLR	25	75		
6	Stop Controlled	PM	1	A							7	A			3	A	2	A	0	A					0	A	0	A	7	A	SBL	SBLR	25	75		
7	${ }^{140 \text { th Street W \& D Diflwood Ln }}$	${ }_{\text {AM }}$	2	A							7	A			3	A	,	A	,	A					3	A	3	A	7	A	SBL	SBLR	25	50		
	Stop Controlled	PM	1	A							7	A			3	A	2	A	1	A					3	A	2	A	7	A	SBL	SBLR	25	50		

2. Maximum delay and L LOS on any approach andor movemen
3 Limiting Movement is the highest delay movement

Intersection 10	Inersection																							TT/																						
1			${ }^{\text {Avg }}$	Max	${ }_{\text {Avg }}^{\text {ave }}$	${ }_{15}^{\text {max }}$	Avg	$]_{\text {max }}$	${ }_{\text {avg }}^{\text {ave }}$	${ }_{\text {max }}^{100}$	Avg	1 max	$\frac{\text { Avg }}{50}$	${ }_{\text {max }}^{100}$	Avg	Max	${ }_{\text {Avg }}$	${ }_{\text {max }}^{100}$	${ }_{\text {AVg }}^{\text {A }}$	${ }_{\text {max }}^{100}$	${ }_{\text {Avg }}$	Max	Avg	Max	${ }_{\text {AVg }}^{18}$	${ }_{\text {max }}^{1 / 5}$	${ }_{\text {Avg }}$	Max	${ }_{\text {avg }}$	${ }_{\text {max }}^{\text {max }}$	Avg	Max	${ }_{\text {Avg }}^{\text {ats }}$	${ }_{\text {max }}^{\text {sax }}$	${ }^{\text {Avg }}$	Max	${ }_{\text {Avg }}$	M Mx	$\frac{\text { Avg }}{50}$	${ }_{\text {max }}^{\text {Max }}$	Avg	Max	${ }_{\text {AVg }}^{\text {Af }}$	${ }_{\text {max }}^{15}$	${ }^{\text {Avg }}$	
2		$\stackrel{\text { PM }}{\stackrel{\text { PM }}{ }}$	${ }^{100}$	${ }^{230}$	50	${ }^{100}$	${ }^{100}$	${ }^{230}$	${ }_{\text {¢ }}^{100}$	${ }^{\frac{175}{300}}$	50	$1{ }^{150}$	${ }^{15}$	${ }^{150}$	${ }^{125}$	${ }^{225}$	${ }_{\substack{\text { S0 } \\ 125}}$	${ }^{100}$	${ }^{\frac{15}{200}}$	${ }^{105}$					${ }^{\frac{1}{25}}$	${ }_{\text {¢ }}^{\text {¢00 }}$	${ }^{230}$	${ }^{450}$	${ }_{30}$	${ }^{125}$	${ }^{25}$	${ }^{15}$		$\stackrel{\text { 100 }}{10}$					${ }_{\substack{\text { ¢00 } \\ 100 \\ 150}}$	${ }^{105}$	${ }^{100}$		${ }_{15}$	${ }^{150}$	${ }_{30}$	$\stackrel{\square}{100}$
3		$\frac{\mathrm{PM}}{\text { M }}$	${ }^{150}$	${ }_{400}$			${ }^{200}$	${ }^{885}$	${ }^{130}$	${ }_{875}$	${ }^{\text {s0 }}$	$\stackrel{150}{15}$	${ }^{25}$	${ }^{50}$	${ }^{100}$	${ }^{115}$	$\stackrel{125}{12}$	${ }^{225}$	${ }^{125}$	${ }^{275}$	\%	100		-	${ }^{125}$	$\stackrel{300}{3}$	${ }^{100}$	${ }^{20}$			${ }^{25}$	${ }^{15}$	${ }_{30}$	${ }^{150}$					$\stackrel{275}{ }$	${ }_{4}^{48}$	${ }^{230}$	$4{ }^{40}$			${ }^{25}$	
$\stackrel{3}{4}$		${ }_{\text {PM }}^{\text {PM }}$			${ }^{25}$	50			$\stackrel{25}{0}$	${ }^{25}$			${ }^{\frac{25}{25}}$								${ }_{50}$			${ }^{15}$														${ }^{15}$								
$\stackrel{4}{5}$		${ }_{\text {PM }}^{\text {PM }}$			${ }^{25}$	${ }^{15}$			\bigcirc	${ }^{25}$			${ }^{25}$	- ${ }^{\frac{50}{50}}$									$\stackrel{5}{50}$	${ }^{15}$													S0	${ }^{15}$								
${ }_{6}$		$\frac{\mathrm{PM} \times}{\text { PM }}$			${ }^{25}$	${ }^{5}$							${ }^{25}$	${ }^{25}$							${ }^{25}$	${ }_{50}$.								${ }^{25}$	${ }^{15}$										
		$\frac{\mathrm{PM}}{\mathrm{PM}}$			${ }^{\frac{25}{25}}$	${ }_{\text {¢ }}^{50}$																																								

Intersection ID	Intersection	$\begin{aligned} & \text { Pae } \\ & \text { Hour } \end{aligned}$	Intersection Delay (1.)		NBL		NBT		NBR		SBL		SBT		Movement Delay (sec/veh) SBR EBL				EBT		EBR		wBL				WBR		$\begin{aligned} & \text { Maximum Delay- } \\ & \operatorname{LOS}(2 .) \end{aligned}$		LimitingMovement	Max Approach Queue						
					WBT	Direction			Average	Max Queue																												
1	CSAH 3 \& 140th Street W/Connemara Tri	AM	18	C			26	D			30	D	29	D	5	A	8	A	5	A	5	A	8	A	6	A	12	B	13	B	11	B	30	D	NBT	NBT	NBT	NBT
1	Stop Controlled	PM	24	C	10	B	12	B	10	B	45	E	47	E	47	E	16	c	18	c	16	c	6	A	8	A	6	A	47	E	SBT	SBLTTR	300	${ }^{225}$				
2	CSAH 318140 dh Street W	AM	27	C	26	C	20	C	4	A	32	C	29	c	6	A	45	D	43	D	27	C	35	D	48	D	35	D	48	D	WBT	WBT	WBT	WBT				
	Signalized Intersection	PM	59	E	38	D	19	B	3	A	21	C	33	C	6	A	62	E	105	F	173	F	37	D	41	D	28	C	173	F	EBR	EBT/R	700	875				
	${ }_{1} 141$ st Street W \& 140 Sh Street W	AM	3	A	9	,			4	A									4	A	3	A	2	A	0	A			9	A	NBL	NBL	NBL	NBL				
3	Stop Controlled	PM	4	A	13	B			8	A									5	A	4	A	6	A	1	A			13	B	NBL	NBL/R	50	100				
4	Essex Ave/Essex Tri \& 140th Street W	${ }_{\text {AM }}$	2	A	8	A	7	A	$\stackrel{4}{5}$	A	7	,	13	,	4	A	2	A	2	A	0	A	2	A	1	A	1	A	9	A	SBT	SBT	SBT	SBT				
	Stop Controlled	PM	3	A	12	B	9	A	5	A	9	A	13	B	5	A	4	A	3	A	2	A	4	A	1	A	1	A	13	B	SBT	SBLTTR	50	75				
5	142 nd Path W \& 1400th Street W	AM	1	A	7	A			4	A									2	A	1	A	1	${ }^{\text {A }}$	0	${ }^{\text {A }}$			7	B	NBL	NBL	NBL	NBL				
		$\frac{\mathrm{PM}}{\mathrm{AM}}$	1	A	10	в			4	A	6	A			4	A	2	A	$\stackrel{2}{1}$	A	1	A	2	A	0	A	0	A	10	B	$\frac{\text { NBL }}{\text { SBL }}$	$\frac{\text { NBL/R }}{\text { SBL }}$	${ }_{\text {SBL }}^{25}$	${ }_{\text {SBL }}^{50}$				
6	Stop Controlled	PM	1	A							7	A			4	A	$\frac{2}{2}$	A	1	A					1	A	0	$\frac{\mathrm{A}}{\mathrm{A}}$	7	A	SBL	${ }_{\text {SBLR }}$	25	75				
7	140 th Street W \& Difitwood Ln	AM	1	A							6	A			3	A	2	A	1	A					2	A	1	A	6	A	SBL	SBL	SBL	SBL				
	Stop Controlled	PM	1	A							6	A			3	A	2	A	1	A					2	A	2	A	6	A	SBL	SBLR	25	50				

2. Maximum delay and LoS on any approach andor movemen

Intersection ID	htersection	Peak Hour	${ }^{\text {Eal }}$		EB/T/R		${ }_{\text {EBT }}$		${ }_{\text {EBT/R }}$		wat		WEITT/		WBT		WET/R		${ }^{\text {Nal }}$		${ }^{\text {NEL/R }}$		NBU/T/R		NBTI		${ }^{\text {NBT } 2}$		${ }^{\text {NBR }}$		${ }_{\text {sfl }}$		S8//R		$\mathrm{sBl}^{\text {LT/R }}$		${ }_{\text {S871 }}$			S872			
					Avg	Max			Avg	Max	Avg	max			Avg	Max	Avg	max	Avg	Max			Avg	max	-	Max	Avg	Max	矿	max	Avg	Max	Avg	Max	${ }^{\text {Avg }}$	Max	AV		max	${ }^{\text {Avg }}$	${ }_{\text {max }}$	${ }^{\text {Avg }}$	${ }^{\text {max }}$
1		$\frac{A M}{\text { PM }}$			${ }^{125}$	${ }^{225}$			\div	\cdots	\div	\cdots	${ }^{50}$	${ }^{125}$		\because		\cdots		\because			${ }^{15}$	${ }^{225}$						\cdots					${ }^{300}$	${ }^{225}$							
2		$\frac{\mathrm{AM}}{\text { PM }}$	125	${ }^{375}$			${ }_{60}$	${ }_{880}$	${ }^{700}$	${ }_{875}$	${ }_{50}$	${ }_{150}$			${ }^{100}$	${ }^{175}$	${ }^{100}$	${ }^{225}$	${ }^{125}$	${ }^{275}$					${ }^{125}$	${ }^{200}$	${ }^{15}$	${ }^{175}$	${ }^{25}$	${ }^{15}$	${ }_{50}$	${ }_{175}$							${ }^{450}$	${ }^{225}$	${ }^{425}$	${ }^{25}$	
3	${ }^{\text {Sta }}$	$\frac{\mathrm{A}}{\text { AM }}$	\because	\because		\cdots	${ }^{25}$	${ }^{25}$	25	${ }^{25}$	25	${ }^{15}$	\div								50	100	\because	\cdots																			
4		${ }_{\substack{\text { PM } \\ \text { AM }}}^{\text {a }}$	-	\cdots			${ }^{25}$	${ }^{25}$	${ }^{25}$	${ }^{25}$	25	${ }^{15}$									${ }_{50}$	${ }^{100}$																					
		${ }_{\text {PM }}^{\text {PM }}$	${ }^{25}$	50					\bigcirc	${ }^{25}$	25	${ }^{30}$											50	${ }^{75}$											${ }_{50}$	${ }^{15}$							
5	$\xrightarrow{\text { Stapen }}$	${ }_{\text {PM }}^{\text {PM }}$									${ }^{25}$	${ }^{25}$									25	so																					
6			${ }^{25}$	50																													25	${ }^{15}$									
7		${ }_{\text {PM }}$	25	50																													${ }^{25}$	s0									

$140^{\text {th }}$ Street Appendix C

Three-Lane Section Concept

Appendix D: Roundabout Concepts

(1) Boron
 \& MENK CSAH 33/140TH STREET ROUNDABOUT FEASIBILITY STUDY

Appendix E: Diamond Path Striping

Appendix F: Environmental Support Documentation

EJSCREEN Report (Version 2019)
0.25 miles Ring around the Area, MINNESOTA, EPA Region 5

Approximate Population: 688
Input Area (sq. miles): 0.28
CSAH 33 at 140th St/Connemara TrI

Selected Variables	State Percentile	EPA Region Percentile	USA Percentile
EJ Indexes			
EJ Index for PM2.5	14	16	10
EJ Index for Ozone	15	15	11
EJ Index for NATA* Diesel PM	13	14	11
EJ Index for NATA* Air Toxics Cancer Risk	13	10	10
EJ Index for NATA* Respiratory Hazard Index	13	10	11
EJ Index for Traffic Proximity and Volume	35	34	27
EJ Index for Lead Paint Indicator	71	64	42
EJ Index for Superfund Proximity	23	14	10
EJ Index for RMP Proximity	12	7	5
EJ Index for Hazardous Waste Proximity	46	43	30
EJ Index for Wastewater Discharge Indicator	N/A	81	74

State Percentile Regional Percentile USA Percentile

[^0]
Approximate Population: 688

Input Area (sq. miles): 0.28
CSAH 33 at 140th St/Connemara TrI

Sites reporting to EPA

Superfund NPL	0
Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF)	0

CSAH 33 at 140th St/Connemara TrI

Selected Variables	Value	State Avg.	\%ile in State	EPA Region Avg.	\%ile in EPA Region	USA Avg.	\%ile in USA
Environmental Indicators							
Particulate Matter (PM 2.5 in $\mathrm{\mu g} / \mathrm{m}^{3}$)	7.02	6.68	54	8.63	10	8.3	18
Ozone (ppb)	36.8	36.2	68	43.4	8	43	17
NATA* Diesel PM ($\mu \mathrm{g} / \mathrm{m}^{3}$)	0.336	0.333	55	0.446	<50th	0.479	<50th
NATA* Cancer Risk (lifetime risk per million)	25	24	56	26	<50th	32	<50th
NATA* Respiratory Hazard Index	0.33	0.31	56	0.34	50-60th	0.44	<50th
Traffic Proximity and Volume (daily traffic count/distance to road)	64	440	37	530	30	750	28
Lead Paint Indicator (\% Pre-1960 Housing)	0.016	0.31	8	0.38	5	0.28	15
Superfund Proximity (site count/km distance)	0.085	0.18	51	0.13	64	0.13	60
RMP Proximity (facility count/km distance)	0.7	0.76	60	0.82	63	0.74	68
Hazardous Waste Proximity (facility count/km distance)	0.11	1.2	30	1.5	17	4	20
Wastewater Discharge Indicator (toxicity-weighted concentration/m distance)	0	0.27	N/A	0.82	28	14	37
Demographic Indicators							
Demographic Index	11\%	22\%	24	28\%	17	36\%	10
Minority Population	13\%	19\%	51	25\%	47	39\%	26
Low Income Population	9\%	25\%	16	31\%	12	33\%	11
Linguistically Isolated Population	0\%	2\%	55	2\%	58	4\%	45
Population With Less Than High School Education	1\%	7\%	14	10\%	9	13\%	8
Population Under 5 years of age	4\%	6\%	23	6\%	29	6\%	29
Population over 64 years of age	9\%	15\%	25	15\%	21	15\%	25

* The National-Scale Air Toxics Assessment (NATA) is EPA's ongoing, comprehensive evaluation of air toxics in the United States. EPA developed the NATA to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that NATA provides broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. More information on the NATA analysis can be found at: https://www.epa.gov/national-air-toxics-assessment.

For additional information, see: www.epa.gov/environmentaljustice

[^1]

EJSCREEN ACS Summary Report

Location: User-specified polygonal location
Ring (buffer): 0.25 -miles radius
Description: CSAH 33 at 140th St/Connemara Trl

	$\begin{array}{r} \text { 2013-2017 } \\ \text { ACS Estimates } \end{array}$	Percent	MOE (\pm)
Population 25+ by Educational Attainment			
Total	465	100\%	196
Less than 9th Grade	3	1\%	28
9th - 12th Grade, No Diploma	3	1\%	29
High School Graduate	55	12\%	97
Some College, No Degree	152	33\%	167
Associate Degree	62	13\%	112
Bachelor's Degree or more	251	54\%	186
Population Age 5+ Years by Ability to Speak English			
Total	661	100\%	320
Speak only English	635	96\%	313
Non-English at Home ${ }^{1+2+3+4}$	26	4\%	82
${ }^{1}$ Speak English "very well"	21	3\%	81
${ }^{2}$ Speak English "well"	5	1\%	45
${ }^{3}$ Speak English "not well"	0	0\%	9
${ }^{4}$ Speak English "not at all"	1	0\%	16
${ }^{3+4}$ Speak English "less than well"	1	0\%	16
${ }^{2+3+4}$ Speak English "less than very well"	5	1\%	45
Linguistically Isolated Households*			
Total	0	0\%	9
Speak Spanish	0	0\%	9
Speak Other Indo-European Languages	0	0\%	9
Speak Asian-Pacific Island Languages	0	0\%	9
Speak Other Languages	0	0\%	9
Households by Household Income			
Household Income Base	221	100\%	102
< \$15,000	3	1\%	24
\$15,000-\$25,000	1	1\%	20
\$25,000-\$50,000	17	8\%	55
\$50,000-\$75,000	27	12\%	67
\$75,000 +	173	78\%	154
Occupied Housing Units by Tenure			
Total	221	100\%	102
Owner Occupied	207	93\%	103
Renter Occupied	15	7\%	47
Employed Population Age 16+ Years			
Total	553	100\%	259
In Labor Force	454	82\%	246
Civilian Unemployed in Labor Force	10	2\%	36
Not In Labor Force	99	18\%	139

[^2]Location: User-specified polygonal location
Ring (buffer): 0.25 -miles radius
Description: CSAH 33 at 140th St/Connemara Trl

	$\begin{array}{r} 2013-2017 \\ \text { ACS Estimates } \end{array}$	Percent	MOE (\pm)
Population by Language Spoken at Home*			
Total (persons age 5 and above)	N/A	N/A	N/A
English	N/A	N/A	N/A
Spanish	N/A	N/A	N/A
French	N/A	N/A	N/A
French Creole	N/A	N/A	N/A
Italian	N/A	N/A	N/A
Portuguese	N/A	N/A	N/A
German	N/A	N/A	N/A
Yiddish	N/A	N/A	N/A
Other West Germanic	N/A	N/A	N/A
Scandinavian	N/A	N/A	N/A
Greek	N/A	N/A	N/A
Russian	N/A	N/A	N/A
Polish	N/A	N/A	N/A
Serbo-Croatian	N/A	N/A	N/A
Other Slavic	N/A	N/A	N/A
Armenian	N/A	N/A	N/A
Persian	N/A	N/A	N/A
Gujarathi	N/A	N/A	N/A
Hindi	N/A	N/A	N/A
Urdu	N/A	N/A	N/A
Other Indic	N/A	N/A	N/A
Other Indo-European	N/A	N/A	N/A
Chinese	N/A	N/A	N/A
Japanese	N/A	N/A	N/A
Korean	N/A	N/A	N/A
Mon-Khmer, Cambodian	N/A	N/A	N/A
Hmong	N/A	N/A	N/A
Thai	N/A	N/A	N/A
Laotian	N/A	N/A	N/A
Vietnamese	N/A	N/A	N/A
Other Asian	N/A	N/A	N/A
Tagalog	N/A	N/A	N/A
Other Pacific Island	N/A	N/A	N/A
Navajo	N/A	N/A	N/A
Other Native American	N/A	N/A	N/A
Hungarian	N/A	N/A	N/A
Arabic	N/A	N/A	N/A
Hebrew	N/A	N/A	N/A
African	N/A	N/A	N/A
Other and non-specified	N/A	N/A	N/A
Total Non-English	N/A	N/A	N/A

Data Note: Detail may not sum to totals due to rounding. Hispanic popultion can be of any race.
N/A meansnot available. Source: U.S. Census Bureau, American Community Survey (ACS) 2013-2017.
*Population by Language Spoken at Home is available at the census tract summary level and up.

0.25 miles Ring around the Area, MINNESOTA, EPA Region 5 (Population: 688)

Environmental Indicators	Demographic Indicators	El Indexes	
[Unselect AII]			
- Demiographic Index		- Minority Population	- Low Income Population
- Linguistically 1 solated		- Less Than HS Educalion	W Under Age 5
- Ower Age 64			

Environmental Indicators Demographic Indicators El Indexes
[Unselect All

PM2.5

- NATA Cancer Risk

Lead Painl Indicator

- Hazardous thaste Proximity

(5ATAR Respiratory HI
- Trafic Froximity
- RMP Proximity

Environmental Indicators	Demographic Indicators	El Indexes		
[Unselect All]				
PM2.5			\checkmark Ozone	- NATA Diesel PM
- nata Cancer risk			\square Nata Respiratory HI	- Traftic Proximity
- Lead Paint Indicator			- Superfund Proxininity	RMP Proximity
- Hezardaus Waste Proximity			Wastewater Discharge Incicator	

-

Appendix G: Identified Utilities

Appendix H: Cost Estimates

Dakota County
7/1/2020
Real People. Real Solutions.

Notes:

1. Pavement section assumed is 10 inch bituminous pavement, 12 inch aggregate base, and 12 inch sand.
2. Trail pavement section assumed is 2.5 inch bituminous pavement and 4 inch aggregate base

[^0]: This report shows the values for environmental and demographic indicators and EJSCREEN indexes. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.

[^1]:

 before taking any action to address potential EJ concerns.

[^2]: Data Note: Datail may not sum to totals due to rounding. Hispanic population can be of anyrace
 N/A means not available. Source: U.S. Census Bureau, American Community Survey (ACS)
 *Households in which no one 14 and over speaks English "very well" or speaks English only.

