County Highway 50

Study Goals and Objectives

- Determine how Hwy. 50 traffic would operate with a roundabout at 185 th St., including:
- If there'd be gaps downstream of roundabout that would allow side street traffic to enter the highway
- If there'd be delays at the roundabout
- Develop Short-term and Long-term Corridor Improvement Needs including intersection traffic control, access, and local street connections

Study Schedule

	Nov. 2012	$\begin{gathered} \text { Dec. } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Jan. } \\ & 2013 \end{aligned}$	$\begin{aligned} & \text { Feb. } \\ & 2013 \end{aligned}$	Mar. 2013	$\begin{aligned} & \text { Apr. } \\ & 2013 \end{aligned}$	$\begin{gathered} \text { May } \\ 2013 \end{gathered}$
1. Data Collection/Review							
2. Corridor Concepts							
- Model							
- Conceptual Development							
- Report					Draft	Review	Final
3. Public Involvement - Resid. \& Business Meetings							
- Open House							
4. Project Team Mtgs.		-	\bigcirc	O	-	O	

Existing and Future Traffic Operations

Hwy. 50 Average Daily Traffic Volumes

Location	2011 ADT	2012 ADT	2030 Projection
CSAH 60 to 192 ${ }^{\text {nd }}$ St	15,000	17,800	27,000
$192^{\text {nd }}$ St to CSAH 9	13,500	N/A	19,000

Currently approaching capacity and expected to exceed capacity by 2030.

Need to consider other options along Hwy. 50 to accommodate future traffic volumes.

Computer M odeling

Example of Microscopic Simulation

M icroscopic simulation provides:

- Ability to account for individual vehicles entering and exiting the system
- Animation of both existing and future conditions
- Second-by-second reporting allowing for gap analysis at downstream intersections

Please Sign In

*Please provide your e-mail address if you would like to receive regular e-mail updates on the County Highway 50 (Kenwood Trail) Corridor Study.

County Highway 50 Kenwood Trail Corridor Study

November 14, 2012 Neighborhood Meeting 4:30-5:30 PM Lakeville North High School

Please Sign In

*Please provide your e-mail address if you would like to receive regular e-mail updates on the County Highway 50 (Kenwood Trail) Corridor Study.

County Highway 50 Kenwood Trail Corridor Study

November 14, 2012 Neighborhood Meeting 6:60-6:30 PM
Lakeville North High School

Please Sign In

*Please provide your e-mail address if you would like to receive regular e-mail updates on the County Highway 50 (Kenwood Trail) Corridor Study.

County Highway 50 Kenwood Trail Corridor Study

November 15, 2012 Neighborhood Meeting 4:30-5:30 PM
Lakeville North High School

Please Sign In

*Please provide your e-mail address if you would like to receive regular e-mail updates on the County Highway 50 (Kenwood Trail) Corridor Study.

County Highway 50 Kenwood Trail Corridor Study

November 14, 2012 Neighborhood Meeting 4:30-5:30 PM Lakeville North High School

BACKGROUND

Study Goals and Objectives

- Determine how Hwy. 50 traffic would operate with a roundabout at $185^{\text {th }}$ St., including the influence on gaps downstream of the roundabout that would allow side street traffic to enter the highway
- Develop Short-term and Long-term Corridor Improvement Needs including intersection traffic control, access, and local street connections

Study Schedule

Existing and Future Traffic

Operations

Hwy. 50 Average Daily Traffic Volumes

Location	2011 ADT	2012 ADT	2030 Projection
CSAH 60 to $192^{\text {nd }}$ St	15,000	17,800	27,000
$192^{\text {nd }}$ St to CSAH 9	13,500	N/A	19,000

Currently approaching capacity and expected to exceed capacity by 2030.

Estimated Daily Level of Service - Arterial Roadways

Need to consider other options along Hwy. 50 to accommodate future traffic volumes.

Why a Roundabout at Highway 60?

> Currently 28,250 vehicles per day use the intersection.
> By 2030, over 52,000 vehicles per day will be using the intersection.

The roundabout, opposed to a signalized intersection at Highway 60, is expected to:

- Provide less delay at the CH 50/60 intersection than a signal
- Have less severe crashes
- Decrease pedestrian conflicts with less exposure to traffic and lower vehicle speeds
- Cost less than a signalized intersection
- Have less Right of Way impacts to the east and south

Level of Service Comparison	Existing Signal	4-Lane Signal	Multilane Roundabout	
AM	Build Year	LOS	LOS C	LOS A
	Future with Planned Growth*	LOS F	LOS D	LOS C**
PM	Build Year	LOSD	LOC C	LOS A
	Future with Planned Growth*	LOS F	LOS D	LOS B*

[^0]
What's Been Completed So Far?

- November
- Neighborhood M eetings to discuss the study
- December
- Collected and updated traffic data

January

- Developed traffic model and alternative corridor scenarios

February

- M eetings with Business Owners along Highway 50 between Ipava and Icenic
- City Council Workshop on February

M arch

- M eeting with Kenwood Trail M iddle School officials

Corridor Crash History

- There were twenty-one crashes on Highway 50 in 2012.
- Based on these crashes the corridor had a crash rate of 1.4 crashes per million vehicle miles. This is below the expected crash rate for similar 3-lane roadways in the metro area that have rates closer to 2.5 crashes per million vehicle miles.
- When five-years of injury and fatal crashes were reviewed (2007-2011), there was one fatal crash and eight injury crashes; most of these crashes were intersection related.
- The fatal crash was a head-on where a vehicle crossed the centerline of Highway 50 between Jaguar Avenue and Ipava Avenue.
- Four out of the eight injury crashes were rear end crashes at intersections; all occurred with southbound vehicles.
- Three of the injury crashes involved vehicles turning left out of $188^{\text {th }}, 192^{\text {nd }}$ and Jaguar Avenue and being hit by a southbound vehicle on Highway 50.

2007-2011 Fatal and Injury Crash Summary

Location	Crashes	Crash Types
$188^{\text {th }}$ Street	2 crashes	Left turn out, rear end
$192^{\text {nd }}$ Street	1 crash	Left turn out
Jaguar Ave	1 crash	Left turn out with bicycle
Ipava Avenue	3 crashes	Two rear end, 1 Right angle
Icenic Trail	1 crashes	Rear End
Non-Intersection	1 crash	Fatal head-on crash

What Time of Day Was

Analyzed?

- The peak hours for the corridor are 7-8 AM and 4:30-5:30 PM based on actual counts collected in early December, 2012.
- The AM peak hour for the corridor includes the peak traffic leaving Kenwood Trail M iddle School in the morning. The school's afternoon peak occurs when County 50 traffic is not at it's peak in the afternoon.

How Are Gaps Assessed?

- A gap is the amount of time available for a vehicle on a side street to make a left turn onto Highway 50 based on gaps in traffic in both directions that overlap.
- An Acceptable Gap is any gap 8 seconds or more.
- The length of a gap also defines how many vehicles can make a left onto County 50 . For example, a 12 second gap allows for 2 vehicles to turn left onto Highway 50.
- The number of vehicles reported that can access Highway 50 is conservative since the minimum acceptable gap works for leftturning vehicles.
Vehicles turning right only need a gap in one direction.

Left-turning Vehicle

What does Level of Service

mean?

- A traditional operational performance measure for roadways is the level of service (LOS).
- A letter, A through F, is assigned to a roadway or intersection based on performance, with A being the best (no congestion) and F being the worst (unacceptable congestion)

What if we just lower the speed limit?

- Studies have shown that merely changing the speed limit sign is not successful in changing driver behavior and does not result in significant change in vehicle speeds.
- As shown in table to the right, various locations in Minnesota attempted to change operating speeds along a corridor by changing the speed limit signs but each had no impact.

Speed Zoning Studies					
$\begin{array}{r} \text { Study } \\ \text { Location } \end{array}$	Before	After	Sign Change +/-MPH	85\% Before After	Change MPH
T.H. 65	($\begin{gathered}\text { spee } \\ \text { Pumi } \\ 40\end{gathered}$		-10	$\begin{aligned} & 34 \\ & 34 \end{aligned}$	0
T.H. 65	$\left[\begin{array}{c} \text { sene } \\ 50 \\ 50 \end{array}\right]$		-10	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	+1
Anoka CSAH 1			-5	$\begin{aligned} & 48 \\ & 50 \end{aligned}$	+2
Anoka CSAH 24	$\left[\begin{array}{c} \text { spetion } \\ 300 \\ 30 \end{array}\right]$		+15	$\begin{aligned} & 49 \\ & 50 \end{aligned}$	+1
Anoka CSAH 51	$\begin{gathered} \substack{\text { sete } \\ \text { Buta } \\ 40} \end{gathered}$		+5	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	+1
Hennepin CSAH 4	$\left[\begin{array}{c} \text { seep } \\ 50 \\ 50 \\ \hline \text { an } \end{array}\right]$		-10	$\begin{aligned} & 52 \\ & 51 \end{aligned}$	-1
Noble Ave			+5	$\begin{aligned} & 37 \\ & 40 \end{aligned}$	+3
62nd Ave N	$\left.\begin{array}{c} \text { semp } \\ \text { enem } \\ 35 \end{array}\right]$		-5	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	0
Miss. St	$\left[\begin{array}{c} \text { sete } \\ \text { enien } \\ 30 \end{array}\right]$		+5	$\begin{aligned} & 39 \\ & 40 \end{aligned}$	+1

Source: MnIDOT UnPublished

What affects the gaps along the corridor?

The number and length of gaps on the roadway can be affected by the following:

- Volume - the more vehicles, the less gaps available. This changes along a corridor because traffic is random in speed and constantly turning on to and off of the corridor.
- Lanes - the more lanes (includes through lanes and turn lanes), the more gaps available.
- Traffic control device and type - signals and roundabouts can create gaps, however, the further from the traffic control device, the less effect it has. Allway stops can have a metering effect.
- Driver behavior - variability in speed can change the number and duration of gaps.

How does the Model Work?

- The model simulates operations on the roadway by accounting for each individual vehicle.
- Each vehicle is unique and has various driverbehavior characteristics such as how aggressive the driver is, how fast they drive, or how closely the driver will follow the next vehicle.
- Individual vehicles also have unique vehicle characteristics. For example, the model accounts for slower acceleration and deceleration of larger vehicles.
- A model "run" estimates traffic conditions for an hour and records the results of both individual vehicles and the system as a whole.
- The model was run 10 times for each scenario and the average of the results are what is reported.

What was Modeled?

The following scenarios were modeled using the VISSIM software:

- Existing Conditions - this scenario used the existing roadway and current traffic volume. The results were compared with actual video of the corridor to calibrate the model.

- Existing with an Improved Signal at CH 60 - existing roadway but additional capacity at the signal at Highway 60 and current traffic volumes
- Existing with Roundabout at $\mathbf{C H} \mathbf{6 0}$ - existing roadway but with a roundabout at Highway 60 and current traffic volumes
- Existing with Roundabout at CH 60 \& Signal at 192 ${ }^{\text {nd }}$ Street this scenario used existing roadway with a roundabout at Highway 60 and a signal at 192 ${ }^{\text {nd }}$ Street and current traffic volumes
- Existing with Four-Lane \& Roundabout at CH 60- current traffic volumes are used in this scenario with a four-lane divided roadway. This scenario does not include any changes in access except the roundabout at Highway 60.
- Future - the future scenario included a four-lane roadway, the roundabout at Highway 60, signals at Jordan Trail/ 190th Street, 192 ${ }^{\text {nd }}$ Street, Ipava Avenue and Dodd Road and other access changes with future traffic volumes.

What type of access changes are being considered for the future?
 Legend

Potential Traffic Control

- Traffic Signal (contingent on justification)
(O) Roundabout

Thru-STOP
Right-in/Out
Should be reviewed at the time of roadway improvements

$3 / 4$ Access
=-=-=- Future Roadway Connections

MODEL RESULIS

Results of Modeling 188 ${ }^{\text {th }}$ Street

AM Peak	Existing	With Improved Signal at CH 60	With Roundabout at CH 60	With Roundabout at 60 \& Signal at 192 ${ }^{\text {nd }}$ Street	4-Lane Roadway \& Roundabout at CH 60	Future (3/4 Access)
\# Vehicles (Volume Demand)	45	45	45	45	45	55
Average Number of Gaps	83	86	73	85	120	53
Number of vehicles that can access Highway 50 with these gaps	174	181	140	199	270	102
Side Street Delay (Level of Service and Average Delay in Seconds)	$\begin{aligned} & \text { LOS C } \\ & (16 \mathrm{sec}) \end{aligned}$	$\begin{gathered} \text { LOSC } \\ (15 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (16 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (17 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS B } \\ (12 \mathrm{sec}) \end{gathered}$	$\begin{aligned} & \text { LOS B } \\ & (10 \mathrm{sec}) \end{aligned}$
PM Peak	Existing	With Improved Signal at CH 60	With Roundabout at CH 60	With Roundabout at 60 \& Signal at 192 ${ }^{\text {nd }}$ Street	$\begin{array}{\|c\|} \text { 4-Lane } \\ \text { Roadway \& } \\ \text { Roundabout } \\ \text { at CH } 60 \end{array}$	Future (3/4 Access)
\# Vehicles (Volume Demand)	20	20	20	20	20	25
Average Number of Gaps	59	70	44	50	73	36
Number of vehicles that can access Highway 50 with these gaps	147	161	78	99	136	63
Side Street Delay (Level of Service and Average Delay in Seconds)	$\begin{gathered} \text { LOS D } \\ (29 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS B } \\ (13 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (22 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (24 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (16 \mathrm{sec}) \end{gathered}$	$\begin{aligned} & \text { LOS B } \\ & (10 \mathrm{sec}) \end{aligned}$

Results of Modeling 192nd Street

AM Peak	Existing	With Improved Signal at CH 60	With Roundabout at CH 60	With Roundabout at 60 \& Signal at 192nd Street	4-Lane Roundabout at CH 60	Future
\# Vehicles (Volume Demand)	140	140	140	140	140	300
Average Number of Gaps	93	98	92	Signal	98	Signal
Number of vehicles that can access Highway 50 with these gaps	225	242	199	NA	215	NA

Side Street Delay

(Level of Service and	LOS D	LOS C	LOS D	LOS C	LOS C	LOS B
Average Delay in	$(28 \mathrm{sec})$	$(24 \mathrm{sec})$	$(31 \mathrm{sec})$	$(28 \mathrm{sec})$	$(18 \mathrm{sec})$	$(14 \mathrm{sec})$

Seconds)

PM Peak	Existing	With Improved Signal at CH 60	$\begin{aligned} & \text { With } \\ & \text { Roundabout } \\ & \text { at } \mathrm{CH} 60 \end{aligned}$	With Roundabout at 60 \& Signal at 192 ${ }^{\text {nd }}$ Street	4-Lane Roadway \& Roundabout at CH 60	Future
\# Vehicles (Volume Demand)	110	110	110	110	110	215
Average Number of Gaps	67	71	59	Signal	62	Signal
Number of vehicles that can access Highway 50 with these gaps	162	173	107	NA	114	NA
Side Street Delay (Level of Service and Average Delay in Seconds)	$\begin{aligned} & \text { LOS D } \\ & (29 \mathrm{sec}) \end{aligned}$	$\begin{gathered} \text { LOSC } \\ (24 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \operatorname{LOS} D \\ (28 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (28 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOSC } \\ (22 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \mathrm{LOS} \mathrm{~B} \\ (10 \mathrm{sec}) \end{gathered}$

Why are the delays in the AM peak hour so different between $192^{\text {nd }}$ and Jaguar when they have similar volumes? $192^{\text {nd }}$ Street is a 4-leg intersection while Jaguar Ave is a T-intersection. So when turning (especially when turning left) at $192^{\text {nd }}$ Street from one of the side streets, the vehicles may have to not only wait for an appropriate gap, but yield to an opposing vehicle turning left or going straight. For example, there are 90 southbound vehicles turning left at $192^{\text {nd }}$ Street in the peak hour, and vehicles turning left from the school driveway have to yield to these vehicles.

MODEL RESULIS

Results of Modeling Jaguar Avenue

AM Peak	Existing	With Improved Signal at CH 60	With Roundabout at CH 60	With Roundabout at 60 \& Signal at 192 ${ }^{\text {nd }}$ Street	4-Lane Roadway \& Roundabout at CH 60	Future (3/4 Access)*
\# Vehicles (Volume Demand)	120	120	120	120	120	75
Average Number of Gaps	115	116	117	116	146	114
Number of vehicles that can access Highway 50 with these gaps	320	311	303	324	406	334
Side Street Delay (Level of Service and Average Delay in Seconds)	$\begin{gathered} \text { LOS C } \\ (16 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS B } \\ (15 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS B } \\ (14 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS C } \\ (16 \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { LOS B } \\ (11 \mathrm{sec}) \end{gathered}$	$\begin{aligned} & \text { LOS A } \\ & (7 \mathrm{sec}) \end{aligned}$

PN Peak	Existing	With Improved Signal at CH 60	With Roundabout at CH 60	With Roundabout at 60 \& Signal at 192nd Street	4-Lane Roundabout at CH 60	Future (3/4 Access)*
\# Vehicles (Volume Demand)	70	70	70	70	70	50
Average Number of Gaps	75	71	68	77	92	89
Number of vehicles that can access Highway 50 with these gaps	192	177	135	199	185	254

Side Street Delay

(Level of Service and	LOS	LOS C	LOS C	LOS C	LOS B	LOS A
Average Delay in	$(25 \mathrm{sec})$	$(25 \mathrm{sec})$	$(22 \mathrm{sec})$	$(22 \mathrm{sec})$	$(14 \mathrm{sec})$	$(9 \mathrm{sec})$

Seconds)

*Future Scenario assumes local street connection to Ipava.

Why are the delays at Jaguar generally the same with and without a signal at $192{ }^{\text {nd }}$ when the gapping data shows differences? There are two measures associated with gaps. First, how many are there. Second, how many vehicles can be served. While the number of gaps changes as well as the number of vehicles that can be served, the vehicles that can be served is well above the demand volume. In the videos it illustrates that there is a difference in delay for some vehicles. However, some vehicles wait less, others have to wait more. So by the time these differences are averaged over 10 model runs, the intersections operate about the same for the two scenarios.

SUMMARY

WIII the Roundabout Change Operatlons on Highway 50?

Based on the modeling, the roundabout at Highway 60 has little effect on the current number of gaps and the delays experienced at local roads throughout the corridor.
(See video comparison)

Example Results - Jaguar Avenue

	AM Peak Hour		PM Peak Hour	
	Existing	with Roundabout at CH 60	Existing	with Roundabout at CH 60
\# Vehicles (Volume Demand)	120	120	70	70
Average Number of Gaps	115	117	75	68
Number of vehicles that can access Highway 50	320	303	192	135
with these gaps				
Side Street Delay (Level of Service and Average Delay in Seconds)	LOS C (16 sec)	LOS B (14 sec)	LOSC $(25 ~ s e c) ~$	LOSC $(22 ~ s e c) ~$

(See location specific results on individual intersection boards)

What If there Is a signal at $192^{\text {nd }}$ Street? There are some minor and likely unnoticeable changes in gaps at intersections along the corridor with the installation of a signal at $192^{\text {nd }}$ Street.

	AM Peak Hour			PM Peak Hour		
188th Street	Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& Signal at $192^{\text {nd }}$	Existing	withRoundabout at CH 60	with Roundabout at CH 60 \& Signal at $192^{\text {nd }}$
\# Vehicles (Volume Demand)	45	45	45	20	20	20
Average Number of Gaps	83	73	85	59	44	50
Number of vehicles that can access Highway 50 with these gaps	174	140	199	147	78	99
	AM Peak Hour			PM Peak Hour		
192ND Street	Existing	$\begin{array}{\|c\|} \hline \text { with } \\ \text { Roundabout } \\ \text { at } \mathrm{CH} 60 \end{array}$	with Roundabout at CH 60 \& Signal at $192^{\text {nd }}$	Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& Signal at $192^{\text {nd }}$
\# Vehicles (Volume Demand)	140	140	140	110	110	110
Average Number of Gaps	93	92	Signal	67	59	Signal
Number of vehicles that can access Highway 50 with these gaps	225	199	NA	162	107	NA

	AM Peak Hour			PM Peak Hour		
Jaguar Avenue	Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& Signal at $192^{\text {nd }}$	Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& Signal at $192^{\text {nd }}$
\# Vehicles (Volume Demand)	120	120	120	70	70	70
Average Number of Gaps	115	117	116	75	68	77
Number of vehicles that can access Highway 50 with these gaps	320	303	324	192	135	199

SUMMARY

What will Improve gaps along the corrldor?

A four-lane roadway will increase the number of gaps at most locations along the corridor.

	AM Peak Hour			PM Peak Hour		
188th Street	Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& 4-Lane	Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& 4-Lane
Average Number of Gaps	83	73	120	59	44	73
Number of vehicles that (an access Highway 50 with these gaps	174	140	270	147	78	136

| | AM Peak Hour | | | PM Peak Hour | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 192nd Street | Existing | with
 Roundabout
 at CH 60 | with
 Roundabout
 at CH 60
 \& 4-Lane | Existing | with
 Roundabout
 at CH 60 | with
 Roundabout
 at CH 60
 \& 4-Lane |
| Average Number of Gaps | 93 | 92 | 96 | 67 | 59 | 63 |
| Number of vehicles that
 (an access Highway 50
 with these gaps | 225 | 199 | 214 | 162 | 107 | 116 |

	AM Peak Hour			PM Peak Hour		
Jaguar Avenue	Existing	$\begin{aligned} & \text { with } \\ & \text { Roundabout } \\ & \text { at CH } 60 \end{aligned}$		Existing	with Roundabout at CH 60	with Roundabout at CH 60 \& 4-Lane
Average Number of Gaps	115	117	146	75	68	92
Number of vehicles that can access Highway 50 with these gaps	320	303	406	192	135	185

What Can Be Done to Improve the Future Operatlons of Highway 50?

- A four-lane roadway with existing traffic provides more gaps at most locations along the corridor.
- A four-lane divided roadway will better accommodate future volumes of up to 27,000 vehicles a day on the Highway 50 corridor.
- New roadway connections should be implemented to provide access to controlled intersections, especially for Jaguar Avenue.
- A long-term access plan should be adopted for the corridor that minimizes the risk of safety issues while providing for efficient traffic operations.

SUMIMARY

What's Next?

Construction of the roundabout at Highway 60 will begin in 2014.

A follow-up Gap Analysis Study will be performed after construction of the roundabout to verify the results of the modeling.

Dakota County and City of Lakeville to plan and schedule the reconstruction of Highway 50 to a four-lane roadway including the necessary access changes and roadway connections.

The earliest possible schedule for reconstruction, contingent on City Council and County Board approval for inclusion in their Capital Improvement Programs, is:

2014 - Design
2015 - Right of Way
2016 - Construction

County Highway 50

Kenwood Trail
Corridor Study

Highway 50 Corridor Study Open House
March 21, 2013

Study Objectives

- Determine how Hwy. 50 traffic would operate with a roundabout at $185^{\text {th }}$ St., including if there'd be gaps downstream of the roundabout that would allow side street traffic to enter the highway
- Develop Short-term and Long-term Corridor Improvement Needs including intersection traffic control, access, and local street connections

Corridor Background

- Current traffic volumes, between 13,000 and 18,000 vehicles per day, are approaching the capacity of the three-lane roadway. If the roadway remains in its current configuration, there will be high levels of congestion in 2030 with volumes between 19,000 and 27,000 vehicle per day.
- The corridor does not experience a higher than expected crash rate and has no unusual crash characteristics when compared to similar threelane roadways in the metro area.

Agenda

- Project Background
- Corridor Modeling Considerations
- Corridor Modeling Results
- Next Steps

What's Happened So Far?

- November
- Neighborhood M eetings to discuss the study
- December
- Collected and updated traffic data
- January
- Developed traffic model and alternative corridor scenarios
- February
- Meetings with Business Owners along Highway 50 between Ipava and Icenic
- City Council Workshop on February $25^{\text {th }}$
- March
- M eeting with Kenwood Trail Middle School officials

Corridor Background

- Traffic turning movement counts were collected in December. Based on these counts
 the highest volume of traffic on the corridor is between 7-8 AM and 4:30-5:30 PM.
- The Kenwood Trail Middle School's AM drop-off volume coincides with the corridor's AM peak. The school's afternoon pick-up peak volume is between 2-3 PM.

How Does the Model Work?

The model simulates operations on the roadway by accounting for each individual vehicle.
Each vehicle is unique and has various driver-behavior
characteristics such as how aggressive the driver is, how fast they drive, or how closely the driver will follow the next vehicle.
Individual vehicles also have unique vehicle characteristics. For example, the model accounts for slower acceleration and deceleration of larger vehicles.
A model "run" estimates traffic conditions for an hour and records the results of both individual vehicles and the system as a whole. The model was run 10 times for each scenario and the or each scenario and the what is reported.

What Scenarios were Modeled?

- Existing Conditions
- Existing with Roundabout at CH 60
- Existing with Roundabout at CH 60 \& Signal at 192nd Street
- Existing with Roundabout at CH 60 \& 4-lane Roadway
- Existing with Improved Signal at CH 60 \& 4lane Roadway
- Future with Access Changes and new roadway connections

Please Sign In

*Please provide your e-mail address if you would like to receive regular e-mail updates on the County Highway 50 (Kenwood Trail) Corridor Study.

Please Sign In

*Please provide your e-mail address if you would like to receive regular e-mail updates on the County Highway 50 (Kenwood Trail) Corridor Study.

County Highway 50 Kenwood Trail Corridor Study

March 21, 2012
4:30-7:30 PM
Kenwood Trail Middle School

County Highway 50

Kenwood Trail

Corridor Study

COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name
Address

Telephone

E-mail

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

overt County Highway 50
Kenwood Trail Corridor Study

Need 4 Lanes

It your study is not correct you will be putting entire Neighborhoods \& dist! I
\qquad

Kenwood Trail Corridor Study

COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center 14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

County Highway 50

Kenwood Trail Corridor Study

COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

\qquad

\qquad
Name

Address

Telephone

E-mail

County Highway 50

Kenwood Trail Corridor Study

COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

PL

\qquad
Telephone

E-mail

Kenwood Trail Corridor Study

COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us
until 2016 (when we corse get 4 lanes)
cohere we please lower speed limit on
\qquad

\qquad
\qquad
\qquad

County Highway 50 Kenwood Trail
Corridor Study
COMMENTS
We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page. Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
n.Sorenson@co.dakota.mn.us

As a 10 year resident of the neighbor hood at Jaguar F Ry Rd 50, our Is choice Is a traffic signal at Jaguar + (not $\left.192^{\text {Wi }}\right)$ Our second choice is a 3 way stop at Jaguar. With the speed of
 Telephone E-mail going South on $50+$ the curve to the road for cars going north on 50
this is a very, very dangerous inter section for the 200 families that only have this one exit out the neighborhood.

The Kenwood Trail M.S. traffic is only busy for 15 minutes in the morning +15 minutes in the afternoon, for 175 days/yt)
Why put traffic signals $192^{\text {ned }}+$ NOT JAGUAR?)

County Highway 50

owen 50
COUNTY

Kenwood Trail

 Corridor Study
COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.

Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comments to:

Brian Sorenson
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

0я КемчБ!н Кұиnoう
 Kenwood Trail
 Corridor Study

COMMENTS
We need your input to guide decisions about the future of Highway 50. Please write comments
Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your
comments to.
Transportation Department
Dakota County Western Service Center
14955 Galaxie Avenue
sn'um'eว

Name
Address
Telephone
E-mail
E-mail

County Highway 50
 Corridor Study

COMMENTS
We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.
Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your
comme
Brian Sorenson
Transportation Department
Dakota County Western Ser
Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

 INSumpor fur fitletic gavmes ypructices

County Highway 50

COMMENTS

We need your input to guide decisions about the future of Highway 50. Please write comments below and/or on reverse side of page.
Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your
comments
Brian Sorenson
Transportation Department
Dakota County Western Service Ce
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

[^1]
On Кемцб!н Кұипоכ
 Kenwood Trail Corridor Study

COMMENTS
We need your input to guide decisions about the future of Highway 50 . Please write comments
Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your comment

14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us
essutatae

Near

$A S \quad 10$

choice is
 choice is a 3 way

 proud 4 thees

runty Highway 50 Kenwood Tran Corridor Study

This is a very, very
dangerous inter section
for the 200 families

-usu for minuted
busy for 15 minutes in the busy
-
morning +15 minutes in the
سि

$$
\text { afternoon, for } 175 \text { days/yt) }
$$

Their
+

$$
192 \mathrm{Nd}
$$

$$
\underset{\sim}{\hat{N}}
$$

$$
\begin{aligned}
& 4 \\
& 5 \\
& 0 \\
& 0 \\
& 5 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\frac{5}{5}+\frac{5}{2}
$$

Why put an

os Кемчб!н Кұиnoう
 Kenwood Trail Corridor Study

COMMENTS

We need your input to guide decisions about the future of Highway 50 . Please write comments
Leave in the "Comments" box on the table or, if you prefer, you may mail or e-mail your
comments to:

> Transportation Department Dakota County Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124
Brian.Sorenson@co.dakota.mn.us

21 comury + buc in	
sput $5+18$	ooyrachubid d) tre 2ul
T	* pudxth
T 70 Wrap	nf sopisuod Q ol6tut f

[^2]
[^0]: *Population and Employment Projections in Comprehensive Plans
 **Roundabout includes planned Free Eastbound Right Turn
 Source: CSAH 50/Kenwood Trail and CSAH 60/185th Street Intersection Study, July 2011

[^1]: Name Shaw, Bluhn
 Address 10152 uppps 196 th way w
 Telephone
 E-mail sbla290@aol.cem

[^2]:

